This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The Huanglongbing (HLB) disease of citrus is one of the most destructive diseases of Citrus species. HLB causes poor quality fruit and a rapid tree decline and is found in Africa, Asia, the Indian subcontinent, the Arabian peninsula and South America. To develop controls, we need to understand the epidemiology of the disease. A prerequisite to this understanding is a reliable method for the identification of the causal pathogen. Since the organism cannot be cultured, molecular-based assays are currently being used for diagnosis. However, these assays are not entirely specific and cross-reactions occur leading to false positive identifications. In order to develop a means to cultivate and detect the HLB pathogen, we want to sequence the pathogen. It is possible to sequence an entire bacterial sequence from a single cell. Using flow cell sorting we will isolate the bacterium from environmental samples for sequencing. With an annotated genome, key metabolic pathways and products for the bacteria can be identified and used to help develop culture methods.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001315-26
Application #
7598426
Study Section
Special Emphasis Panel (ZRG1-CB-K (40))
Project Start
2007-09-30
Project End
2008-06-30
Budget Start
2007-09-30
Budget End
2008-06-30
Support Year
26
Fiscal Year
2007
Total Cost
$20,964
Indirect Cost
Name
Los Alamos National Lab
Department
Type
DUNS #
175252894
City
Los Alamos
State
NM
Country
United States
Zip Code
87545
Frumkin, Jesse P; Patra, Biranchi N; Sevold, Anthony et al. (2016) The interplay between chromosome stability and cell cycle control explored through gene-gene interaction and computational simulation. Nucleic Acids Res 44:8073-85
Johnson, Leah M; Gao, Lu; Shields IV, C Wyatt et al. (2013) Elastomeric microparticles for acoustic mediated bioseparations. J Nanobiotechnology 11:22
Micheva-Viteva, Sofiya N; Shou, Yulin; Nowak-Lovato, Kristy L et al. (2013) c-KIT signaling is targeted by pathogenic Yersinia to suppress the host immune response. BMC Microbiol 13:249
Ai, Ye; Sanders, Claire K; Marrone, Babetta L (2013) Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal Chem 85:9126-34
Sanders, Claire K; Mourant, Judith R (2013) Advantages of full spectrum flow cytometry. J Biomed Opt 18:037004
Cushing, Kevin W; Piyasena, Menake E; Carroll, Nick J et al. (2013) Elastomeric negative acoustic contrast particles for affinity capture assays. Anal Chem 85:2208-15
Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A et al. (2012) One-dimensional acoustic standing waves in rectangular channels for flow cytometry. Methods 57:259-71
Vuyisich, Momchilo; Sanders, Claire K; Graves, Steven W (2012) Binding and cell intoxication studies of anthrax lethal toxin. Mol Biol Rep 39:5897-903
Chaudhary, Anu; Ganguly, Kumkum; Cabantous, Stephanie et al. (2012) The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochem Biophys Res Commun 417:299-304
Marina, Oana C; Sanders, Claire K; Mourant, Judith R (2012) Correlating light scattering with internal cellular structures. Biomed Opt Express 3:296-312

Showing the most recent 10 out of 240 publications