The long term goal of this project is to determine the molecular mechanism of force generation and its regulation in the actomyosin contractile system of skeletal muscle. The project seeks to achieve this goal through measurements of the nanosecond rotational motions of individual proteins of the actomyosin contractile apparatus during ATP hydrolysis in a reconstituted model system. The rotational dynamics of individually labeled proteins of the thin filament complex will be measured using time-resolved polarization anisotropy of fluorescence from probes covalently attached to specific sulfhydryls in the proteins actin, tropomyosin, troponin C, and troponin I. (Appropriate probes include IAEDANS and pyrene). The nanosecond rotational dynamics of each of these proteins will be monitored in the thin filament complex (F-actin + Tropomyosin + Troponin) and in complexes with myosin and its proteolytic fragments (myosin heads) under conditions that mimic the physiologically relevant states of rigor (-Ca2+, -ATP), relaxation (-Ca2+,+ATP), and contraction (+Ca2+,+ATP). These studies will compliment our ongoing studies of the rotational dynamics of these proteins on the microsecond time scale using phosphorescence emission anisotropy.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001348-15
Application #
5223320
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
1996
Total Cost
Indirect Cost
Sheth, Rahul A; Arellano, Ronald S; Uppot, Raul N et al. (2015) Prospective trial with optical molecular imaging for percutaneous interventions in focal hepatic lesions. Radiology 274:917-26
Roussakis, Emmanuel; Spencer, Joel A; Lin, Charles P et al. (2014) Two-photon antenna-core oxygen probe with enhanced performance. Anal Chem 86:5937-45
Courter, Joel R; Abdo, Mohannad; Brown, Stephen P et al. (2014) The design and synthesis of alanine-rich ?-helical peptides constrained by an S,S-tetrazine photochemical trigger: a fragment union approach. J Org Chem 79:759-68
Kuroda, Daniel G; Singh, Prabhat K; Hochstrasser, Robin M (2013) Differential hydration of tricyanomethanide observed by time resolved vibrational spectroscopy. J Phys Chem B 117:4354-64
Singh, Prabhat K; Kuroda, Daniel G; Hochstrasser, Robin M (2013) An ion's perspective on the molecular motions of nanoconfined water: a two-dimensional infrared spectroscopy study. J Phys Chem B 117:9775-84
Chuntonov, Lev; Ma, Jianqiang (2013) Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton. J Phys Chem B 117:13631-8
Culik, Robert M; Annavarapu, Srinivas; Nanda, Vikas et al. (2013) Using D-Amino Acids to Delineate the Mechanism of Protein Folding: Application to Trp-cage. Chem Phys 422:
Kuroda, Daniel G; Bauman, Joseph D; Challa, J Reddy et al. (2013) Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat Chem 5:174-81
Lam, A R; Moran, S D; Preketes, N K et al. (2013) Study of the ?D-crystallin protein using two-dimensional infrared (2DIR) spectroscopy: experiment and simulation. J Phys Chem B 117:15436-43
Goldberg, Jacob M; Speight, Lee C; Fegley, Mark W et al. (2012) Minimalist probes for studying protein dynamics: thioamide quenching of selectively excitable fluorescent amino acids. J Am Chem Soc 134:6088-91

Showing the most recent 10 out of 128 publications