Nitric oxide myoglobin (MbNO) at 300 K was photodissociated with 405 nm pulses. The NO recombination in several mutants of iron and cobalt myoglobins was investigated at a time resolution of ca. 70 fs. The geminate recombination of NO was nonexponential on sub-nanosecond time scales. For both metals, the change of the detailed structure of the heme pocket (position 68 mutations) caused significant changes in the rates of recombination; however, the metal substitution influenced the recombination much less than did amino acid substitution. The results indicate a primary role of the heme pocket structure in the dynamics, and they suggest that proximal protein relaxation is not the limiting factor in the geminate recombination process. Recombination in cobalt derivatives is somewhat more efficient on the sub-nanosecond time scales than in corresponding iron myoglobins, consistent with other results that show a greater intrinsic reactivity toward the NO of cobalt compar ed with th e iron heme. A comparison of results using Soret band excitation with previous Q-state excitation studies demonstrates that the ligand dissociates with a similar kinetic energy in both cases, suggesting fast intramolecular energy redistribution before dissociation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001348-18
Application #
6120135
Study Section
Project Start
1999-08-01
Project End
2000-07-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
18
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Sheth, Rahul A; Arellano, Ronald S; Uppot, Raul N et al. (2015) Prospective trial with optical molecular imaging for percutaneous interventions in focal hepatic lesions. Radiology 274:917-26
Roussakis, Emmanuel; Spencer, Joel A; Lin, Charles P et al. (2014) Two-photon antenna-core oxygen probe with enhanced performance. Anal Chem 86:5937-45
Courter, Joel R; Abdo, Mohannad; Brown, Stephen P et al. (2014) The design and synthesis of alanine-rich ?-helical peptides constrained by an S,S-tetrazine photochemical trigger: a fragment union approach. J Org Chem 79:759-68
Singh, Prabhat K; Kuroda, Daniel G; Hochstrasser, Robin M (2013) An ion's perspective on the molecular motions of nanoconfined water: a two-dimensional infrared spectroscopy study. J Phys Chem B 117:9775-84
Chuntonov, Lev; Ma, Jianqiang (2013) Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton. J Phys Chem B 117:13631-8
Culik, Robert M; Annavarapu, Srinivas; Nanda, Vikas et al. (2013) Using D-Amino Acids to Delineate the Mechanism of Protein Folding: Application to Trp-cage. Chem Phys 422:
Kuroda, Daniel G; Bauman, Joseph D; Challa, J Reddy et al. (2013) Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat Chem 5:174-81
Lam, A R; Moran, S D; Preketes, N K et al. (2013) Study of the ?D-crystallin protein using two-dimensional infrared (2DIR) spectroscopy: experiment and simulation. J Phys Chem B 117:15436-43
Kuroda, Daniel G; Singh, Prabhat K; Hochstrasser, Robin M (2013) Differential hydration of tricyanomethanide observed by time resolved vibrational spectroscopy. J Phys Chem B 117:4354-64
Goldberg, Jacob M; Speight, Lee C; Fegley, Mark W et al. (2012) Minimalist probes for studying protein dynamics: thioamide quenching of selectively excitable fluorescent amino acids. J Am Chem Soc 134:6088-91

Showing the most recent 10 out of 128 publications