This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. hbAP-CN is a halothane binding amphiphilic peptide which forms a 4-helix bundle in aqueous detergent buffer solution. Halothane, an inhalational general anesthetic, binds to the cavity in the hydrophobic core of the bundle. A fluorophore incorporated into each peptide helical strand, cyano-phenylalanine (Phe-CN) is located right next to the halothane binding site. Halothane is known to quench fluorescence when it binds to hbAP-CN. The goal of doing a fluorescence study including the measurement of fluorescent spetra and lifetimes as a function of halothane concentration is to better understand the binding site and quenching mechanism (static or dynamic). It it planned to measure fluorescence lifetimes at the Resource using 270nm excitation (tripled Ti:sapphire laser) of hbAP-CN and Phe-CN itself.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001348-28
Application #
7955453
Study Section
Special Emphasis Panel (ZRG1-BCMB-N (40))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
28
Fiscal Year
2009
Total Cost
$9,586
Indirect Cost
Name
University of Pennsylvania
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Sheth, Rahul A; Arellano, Ronald S; Uppot, Raul N et al. (2015) Prospective trial with optical molecular imaging for percutaneous interventions in focal hepatic lesions. Radiology 274:917-26
Roussakis, Emmanuel; Spencer, Joel A; Lin, Charles P et al. (2014) Two-photon antenna-core oxygen probe with enhanced performance. Anal Chem 86:5937-45
Courter, Joel R; Abdo, Mohannad; Brown, Stephen P et al. (2014) The design and synthesis of alanine-rich ?-helical peptides constrained by an S,S-tetrazine photochemical trigger: a fragment union approach. J Org Chem 79:759-68
Singh, Prabhat K; Kuroda, Daniel G; Hochstrasser, Robin M (2013) An ion's perspective on the molecular motions of nanoconfined water: a two-dimensional infrared spectroscopy study. J Phys Chem B 117:9775-84
Chuntonov, Lev; Ma, Jianqiang (2013) Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton. J Phys Chem B 117:13631-8
Culik, Robert M; Annavarapu, Srinivas; Nanda, Vikas et al. (2013) Using D-Amino Acids to Delineate the Mechanism of Protein Folding: Application to Trp-cage. Chem Phys 422:
Kuroda, Daniel G; Bauman, Joseph D; Challa, J Reddy et al. (2013) Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat Chem 5:174-81
Lam, A R; Moran, S D; Preketes, N K et al. (2013) Study of the ?D-crystallin protein using two-dimensional infrared (2DIR) spectroscopy: experiment and simulation. J Phys Chem B 117:15436-43
Kuroda, Daniel G; Singh, Prabhat K; Hochstrasser, Robin M (2013) Differential hydration of tricyanomethanide observed by time resolved vibrational spectroscopy. J Phys Chem B 117:4354-64
Serrano, Arnaldo L; Waegele, Matthias M; Gai, Feng (2012) Spectroscopic studies of protein folding: linear and nonlinear methods. Protein Sci 21:157-70

Showing the most recent 10 out of 128 publications