Our lab has been engaged in the structure determination of RNA and DNA fragments using nuclear magnetic resonance and computational modelling tools for quite some years. Recent RNA projects involve the determination of the solution structure of a conserved RNA sequence in the LTR of HIV-1 shortly downstream from the TAR sequence. The 21 mer RNA has been chemically synthesized and the NMR studies were not fully completed when we realized that the material was slowly decomposing. Another large portion of RNA was synthesized that however gave significantly different NMR spectra. We need to characterize old and new materials to complete our structural work. Without this information we would have to spend several months to re-acquire many 2D NMR sets. Therefore we propose to use mass spec to analyze sequence and identity of the different batches of RNA. In another project, we are studying the structure of a conserved motif of SRP RNA (domain IV, 43 nucleotides). RNAs of that size are synthesized via in vitro transcription. This enzymatic process often leaves us with a mixture of products including the full length transcript and most commonly a species with an additional 3'-residue. This additional longer RNA fragment is difficult to remove and causes problems in the NMR assignment process. Since the RNA transcripts are PAGE purified, one cannot necessarily make assumptions about which of the spatially very tightly packed bands on the gel represents the full length product. Mass spec would not only help us identify which of the bands is the desired product but also would give us an idea if the extra 3'-nucleotide is a specific one or a mixture. This information would help the NMR assignment process enormously since we would know what signals to expect.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR001614-19S2
Application #
6568496
Study Section
Project Start
2000-03-01
Project End
2002-02-28
Budget Start
Budget End
Support Year
19
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications