This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Cancer cells commonly upregulate the ribonucleoprotein-telomerase. Inhibition of telomerase has previously been predicted to slow cancer growth, but only after a sufficient period elapses for telomere shortening to occur. Recently, we have inhibited cancer cell growth specifically by inhibiting telomerase function through an siRNA targeting the template region of wild-type telomerase RNA. Expression of such siRNA in cancer cells resulted in dramatic reduction of telomerase activity, rapid inhibition of cell growth and induction of apoptosis. Unexpectedly, those potent cellular effects were not apparently induced by the disruption of telomere structures, suggesting that inhibition of telomerase by siRNA may inhibit a function of telomerase in cancer cells other than telomere length maintenance. DNA microarray analysis in these cells indicates rapid changes in growth-related gene expression that is independent of interferon response triggered by double stranded RNA. These data suggested that telomerase may be essential for cancer cell proliferation in addition to telomere length maintenance. Therefore, a main focus of our research is to further understand the underlying mechanisms by which telomerase regulates cell proliferation through identification of novel telomerase associated factors. Biochemistry purification of telomerase complexes from human cancer cell line Hela S3 has been achieved using Tandem affinity purification (TAP) protocol. Proteins associated specifically with telomerase will be isolated and identified by Mass Spectrometry.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001614-24
Application #
7369084
Study Section
Special Emphasis Panel (ZRG1-BECM (02))
Project Start
2006-03-01
Project End
2007-02-28
Budget Start
2006-03-01
Budget End
2007-02-28
Support Year
24
Fiscal Year
2006
Total Cost
$5,910
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications