This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Sir2 (Silent Information Regulator-2) proteins function in aging and lifespan regulation in multiple model organisms. Preliminary work indicates that one mammalian Sir2 protein, SIRT6, suppresses genomic instability and attenuates the onset of several age-associated pathologies. However, the molecular mechanisms of SIRT6 function are not known. Thus, a systematic characterization of the basic molecular mechanisms through which SIRT6 functions in human cells should be instrumental for elucidating fundamental biological processes that impact on human health and aging. A series of biochemical, cellular, and global proteomic and genomic analyses will be carried out to define the molecular functions of SIRT6 in human cells. We propose: 1. To elucidate the molecular mechanisms by which SIRT6 functions in chromatin regulation. Post-translational modifications of histones at chromatin play important roles in gene expression programs and DNA damage responses. Preliminary results indicate that SIRT6 is tightly associated with, and may catalyze modifications of, histones at chromatin. We will define the enzymatic activity of SIRT6 at chromatin and the effects of altered SIRT6 levels on chromatin structure and functional states. 2. To elucidate novel SIRT6 regulated molecular pathways. Proteomic and biochemical approaches will be taken to isolate and identify SIRT6 substrates, protein binding partners, and macromolecular complexes. In addition, genome wide approaches will be employed to identify SIRT6-regulated genes and SIRT6 binding sites at chromatin. Mass Spectrometry analysis in collaboration with the UCSF Mass Spectrometry Facility will be essential for these aims, in the identification of post-translational modifications on histones and other proteins catalyzed by SIRT6, and of SIRT6 interacting factors and macromolecular complexes.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Pharmacy
San Francisco
United States
Zip Code
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications