This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The acute respiratory distress syndrome (ARDS) is one of the most important causes for morbidity and mortality in intensive care medicine. It can be the sequel of diseases like sepsis, aspiration of gastric contents, pneumonia or trauma. It is characterized by an inflammatory reaction that leads to a breakdown of the alveolar-capillary barrier, resulting in an influx of fluid and proteins from the blood into the alveolar space. The exact mechanism of the inflammatory reaction is still incompletely understood. Numerous clinical and experimental trials have been made in order to improve the understanding and evaluate possible treatment options. It has been shown in clinical studies that the mode of mechanical ventilation, namely the tidal volume that is used, impacts survival of patients with this disease.The focus of our studies was on three different aspects: - The evaluation of pulmonary edema fluid samples of patients with ARDS compared to control samples - Induction of ventilator induced lung injury in rats and comparison of the proteome of alveolar type II cells from these animals with cells from not ventilated control animals- Induction of liver damage in rats by ischemia-reperfusion and evaluation of the proteome of the pulmonary alveolar type II cells to investigate the influence of a systemic inflammatory response on the proteome of these cells- In an additional project in cooperation with the UCSF liver center, proteomic changes in inflammatory cells were investigated. This was done using isolated Kupffer cells from rats with ischemia-reperfusion injury.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001614-26
Application #
7724167
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2008-06-01
Project End
2009-05-31
Budget Start
2008-06-01
Budget End
2009-05-31
Support Year
26
Fiscal Year
2008
Total Cost
$2,642
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications