This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Brassinosteriods (BRs) are steroid hormones with important roles in plants. BR signal is perceived by the cell-surface receptor kinase BRI1, which initiates a cascade of protein phosphorylation leading to nuclear gene expression and cellular responses. Downstream BR signaling involves the cytoplasmic GSK3/SHAGGY-like kinase BIN2. BIN2 phosphorylates the transcription factors BZR1 and BZR2/BES1. Phosphorylation of the transcription factors inhibits their DNA binding and nuclear localization and promotes their degradation by the proteasome. The goal of this study is to understand BR signal transduction at the biochemical and proteomic levels. First, we will identify the BIN2-phosphorylation sites of BZR1 using mass spectrometry (MS). The importance of some of the phosphorylation sites will be further tested by site-directed-mutagenesis and transgenic experiments. Second, in order to understand how BR signaling regulates BIN2 activity, we will purify BIN2-interacting proteins and identify them using MS analysis. Third, we are identifying BR-regulated proteins using two-dimensional difference gel electrophoresis (2-D DIGE) and iTRAQ mass spectrometry. We will identify BR-regulated proteins by performing proteomic analysis of total protein, plasma membrane, and phosphoprotein fractions. Forth, we plan to study BR regulated protein phosphorylation using immobilized metal affinity chromatography and the iTRAQ method. The functions of the identified proteins will be studied using genetic and transgenic experiments. This research project will advance our understanding of the molecular mechanism for steroid responses in plants, which will have broad implications in our understanding of steroid actions in general.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001614-26
Application #
7724170
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2008-06-01
Project End
2009-05-31
Budget Start
2008-06-01
Budget End
2009-05-31
Support Year
26
Fiscal Year
2008
Total Cost
$12,946
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications