This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Hepatic microsomal hemoproteins cytochromes P450 (P450s) include multiple constitutive and inducible enzymes, containing one prosthetic heme (iron-protoporphyrin IX) moiety/mole of enzyme. P450s are instrumental in the oxidative/reductive metabolism of various physiologically relevant endobiotics and xenobiotics. In the course of certain redox reactions, the participating P450 is sacrificed in a process classified as a mechanism-based or """"""""suicide"""""""" inactivation. One such process involves destruction of P450 prosthetic heme into fragments that irreversibly modify its protein at its active site in vivo, thereby triggering P450 protein degradation. The long-term goals of our research are centered on the hypothesis that heme-modification of the P450 protein predisposes it for degradation. Thus, they have focussed on structural characterization of the heme-modified protein, and elucidation of the mechanism of its proteolytic degradation. Using HPLC-peptide mapping and the vast array of mass spectrometric approaches currently made available by the MS Core Facility, studies are in progress in collaboration with Drs. Burlingame, Medzihradszky and Maltby to characterize the heme-modifying species and identify the precise amino acid residue of the P450 protein that is modified. Furthermore, findings to date reveal that the heme-modified P450 3A4 protein is phosphorylated, ubiquitinated and degraded by the cytosolic 26S proteasome, but the precise proteins involved in this process such as the ubiquitin E3 ligase and the role of chaperones (p97, Hsps90/70) remain to be identified. While the ubiquitination and degradation are related, it is unclear whether phosphorylation is necessary for these events. Thus, another objective is to determine the role of phosphorylation in P450 degradation by characterizing the cellular kinases involved, the protein sites phosphorylated and the use of selective inhibitors of the identified kinases as probes. Accordingly, a combination of biochemical/immunological and cross-linking/proteomic approaches are planned to identify these proteins. Similarly, mass spectrometric approaches will be used to specifically elucidate the sites of P450 protein phosphorylation and consequently, its nature. The proposed studies center on a physiologically relevant but neglected aspect of P450 biology. P450s are integral ER-membrane proteins and serve as models for ERAD of other ER-residents. Furthermore, these studies are focussed on P450 3A4, the major human liver and intestinal enzyme and its rat orthologs, which are responsible for the metabolism of over 60% of clinically prescribed drugs, and are particularly susceptible to this biological fate.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001614-27
Application #
7957375
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
27
Fiscal Year
2009
Total Cost
$13,476
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications