This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Several proteomic studies of mammalian and yeast mitochondria have identified a growing list of over 1000 proteins in the mitochondrial proteome. The overlap between various studies is limited to 60-80% and the relative abundance of these components varies with tissue type. The number of mitochondrial proteins has been estimated at 2000, based on an endosymbiont model for mitochondrial evolution (Gabaldon, 2004), thus the mitochondrial proteome is still incomplete. The vast majority of mitochondrial proteins are nuclear encoded and are expected to contain N-terminal peptide signals used for mitochondrial targeting. Interestingly, only one third of the proteins in the mammalian mitochondrial proteome are predicted to contain a signal peptide motif using bioinformatic analysis, while another third are easily annotated with known mitochondrial enzymatic functions. The remaining third of the sample are typically novel mitochondrial localized proteins of ambiguous function, and in some studies this number is greater than half of the total protein list. Conspicuously absent from many of these protein lists are the apoptosis regulating proteins, which associate with mitochondrial membranes in a highly regulated pathway for cell death. This project will address 1) functional annotation of mitochondrial proteins using controlled biology and pharmacological induction of early apoptosis signaling and 2) analysis of N-terminal peptide for targeting of proteins to mitochondria. To accomplish these goals, we are investigating free flow electrophoresis (FFE) purification of intact mitochondria, reducing contamination by high abundance ribosome and nuclear components. We are also using a chemical biology enzymatic approach to label with subtiligase the free N-termini of mitochondrial proteins for affinity capture. The role of the Mass Spectrometry Facility in this project is to handle all aspects of the organelle preparation, peptide sequencing and bioinformatic analysis of N-terminal peptides.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001614-27
Application #
7957439
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
27
Fiscal Year
2009
Total Cost
$21,981
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications