This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The investigation of venoms is focused on the knowledge of the components directly related to the toxic effects for humans, but many components directly related to the toxic effects for humans, but many components have a broad spectrum of biological activities. This, in addition to the medical reasons, the study of the composition of the venom has a great interest for the discovery of new biochemical tools for the analysis of the operational mechanisms of the nervous system and cellular membranes. It has been reported that scorpion venom contains a variety of biologically active components: enzymes, peptides, nucleotides, lipids, biogenic amines and other unknown substances. Scorpion venoms are rich sources of peptides with a variety of pharmacological functions. Known pharmacological activities include antimicrobial, anti-epilepsy, insecticide, phospholipase and toxins. The scorpion Vaejovis mexicanus smithi is native from the state of Morelos, Mexico. This species has not been studied in depth previously. Preliminary studies have shown a complex mixture of components present in its venom, which makes it an interesting target of study for the search of new bioactive components. Crude venom was fractionated by RP-HPLC, and around 85 fractions were collected. Each fraction was subjected to MALDI-TOF mass spectrometry. The approximate size of different cannel-blocking peptides has been previously reported. Fractions containing components of such molecular masses were selected for further studies. Due to the complexity of the mixture and the size of the peptides of interest, Edman sequencing as well as LC/MS, CID and ECD could be utilized in order to decipher the amino acid sequence of the toxin components. A combination ECD analysis and selective N-terminal labeling can aid the de novo sequencing of large peptides.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001614-28
Application #
8169769
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2010-09-12
Project End
2011-05-31
Budget Start
2010-09-12
Budget End
2011-05-31
Support Year
28
Fiscal Year
2010
Total Cost
$1,766
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications