This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The ARF-p53 tumor suppressor pathway is one of the cell's major defenses against the stimulation of uncontrolled cell division induced by activated cellular and viral oncogene. ARF and/or p53 are mutated in over 70% of human cancers. The inappropriate activation of growth promoting cellular signaling pathways by oncogenes can result in the induction of ARF. The expression of ARF can activate p53 leading to apoptotic cell death or cell cycle arrest. The mechanisms by which the ARF-p53 pathway is regulated remains to be precisely elucidated. The expression of ARF can activate p53 leading to apoptotic cell death or cell cycle arrest. We have shown that the polyoma virus oncogene, PYMT, activates an ARF-induced p53 mediated block. We find that the polyoma virus small T-antigen, PYST, via its ability to bind to cellular protein phosphatase 2A (PP2A), can negate the ARF-induced block to cell division induced by PYMT. We intend to use the PY induction and inhibition of ARF signaling to p53 to better define this important tumor suppressor pathway. Our hypothesis is that the polyoma virus proteins are revealing an important new aspect of the ARF-p53 tumor suppressor signaling circuit, and we plan to use these viral proteins as tools to study its molecular basis. To better define the role of PYMT in activating ARF and as an oncogene, and to define the role of PYST in blocking ARF signaling to p53 we plan to characterize the proteins complexed to PYMT, PYST and members of the ARF-p53 signaling pathway. In the first instance proteins bound to TAP fusion constructs would be identified by Mass Spectrometry.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001614-29
Application #
8363758
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
29
Fiscal Year
2011
Total Cost
$11,116
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications