The brightness of the synchrotron source makes it possible to collect high quality infrared spectra at spatial resolutions near the diffraction limit of the infrared light. Recently, we imaged the distribution of various chemical compounds in single living cells. Chemical mapping of nucleic acids, proteins, and lipids in single living mouse hybridoma B cells at a resolution of 3 ?m was performed. The main chemical classes (proteins, lipids, and nucleic acids) could be identified through the assignments of one or more vibrational bands with frequencies characteristic of their functional groups. In a single living hybridoma B cell, the Amide I, Amide II, and nucleic acid images showed a homogeneous distribution, with a maximum intensity in the center of the cell. In contrast, the aliphatic C-H group distribution departs markedly from that of the proteins. This functional group is mainly representative of the lipids. Interestingly, when cells at late stages of mitosis were analyzed, a high concentration of lipids was detected in the region where the contractile ring responsible for the cleavage furrow is located. This could correspond to the inward pulling of the lipids by the contractile ring occurring in that region just before cell division. After cell separation, the lipids again exhibited a heterogeneous distribution resembling the one observed in a single isolated cell.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001633-16
Application #
6120357
Study Section
Project Start
1998-09-30
Project End
1999-08-31
Budget Start
Budget End
Support Year
16
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Vongsvivut, Jitraporn; Fernandez, Jason; Ekgasit, Sanong et al. (2004) Characterization of supported cylinder-planar germanium waveguide sensors with synchrotron infrared radiation. Appl Spectrosc 58:143-51
Masip, Lluis; Pan, Jonathan L; Haldar, Suranjana et al. (2004) An engineered pathway for the formation of protein disulfide bonds. Science 303:1185-9
Huang, Raymond Y; Miller, Lisa M; Carlson, Cathy S et al. (2003) In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone 33:514-21
Rashidzadeh, Hassan; Khrapunov, Sergei; Chance, Mark R et al. (2003) Solution structure and interdomain interactions of the Saccharomyces cerevisiae ""TATA binding protein"" (TBP) probed by radiolytic protein footprinting. Biochemistry 42:3655-65
Uchida, Takeshi; Takamoto, Keiji; He, Qin et al. (2003) Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme. J Mol Biol 328:463-78
Taylor, Colleen M; Watton, Stephen P; Bryngelson, Peter A et al. (2003) Inner-sphere complexation of cobalt(II) 2,9-dimethyl-1,10-phenanthroline ([Co(neo)]2+) with commercial and sol-gel derived silica gel surfaces. Inorg Chem 42:312-20
Dewan, John C; Feeling-Taylor, Angela; Puius, Yoram A et al. (2002) Structure of mutant human carbonmonoxyhemoglobin C (betaE6K) at 2.0 A resolution. Acta Crystallogr D Biol Crystallogr 58:2038-42
Kiselar, J G; Maleknia, S D; Sullivan, M et al. (2002) Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry. Int J Radiat Biol 78:101-14
Swisher, Jennifer F; Su, Linhui J; Brenowitz, Michael et al. (2002) Productive folding to the native state by a group II intron ribozyme. J Mol Biol 315:297-310
Dhavan, Gauri M; Crothers, Donald M; Chance, Mark R et al. (2002) Concerted binding and bending of DNA by Escherichia coli integration host factor. J Mol Biol 315:1027-37

Showing the most recent 10 out of 68 publications