ydroxyl radicals formed by radiolysis can function as a chemical probe since their reactivity with proteins and DNA-protein complexes is influenced by solvent accessibility within these molecules. In contrast to other methods with reaction time scales of a few seconds where bonds of the peptide backbone are cleaved our studies of proteins have revealed that amino acids side chains are modified by synchrotron radiolysis. In order to apply this technology to characterize transient intermediates of a protein folding process and protein/ligand interactions, it is necessary to understand the nature and reactivity order of radiolytic modifications to amino acids. This investigation reports the mass spectrometric identification of radiolysis-induced modification of amino acids: Phe, Tyr, Pro, Met, Cys and Trp. The additional use of O18-labeled water under aerobic experimental conditions reveals that amino acid side chain modifications occur through two pathways involving both hydroxyl radicals from water and molecular oxygen from air. The order of reactivity for these amino acids has been examined by tandem mass spectrometry.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001633-19
Application #
6491436
Study Section
Project Start
2001-09-01
Project End
2002-08-31
Budget Start
Budget End
Support Year
19
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Vongsvivut, Jitraporn; Fernandez, Jason; Ekgasit, Sanong et al. (2004) Characterization of supported cylinder-planar germanium waveguide sensors with synchrotron infrared radiation. Appl Spectrosc 58:143-51
Masip, Lluis; Pan, Jonathan L; Haldar, Suranjana et al. (2004) An engineered pathway for the formation of protein disulfide bonds. Science 303:1185-9
Huang, Raymond Y; Miller, Lisa M; Carlson, Cathy S et al. (2003) In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone 33:514-21
Rashidzadeh, Hassan; Khrapunov, Sergei; Chance, Mark R et al. (2003) Solution structure and interdomain interactions of the Saccharomyces cerevisiae ""TATA binding protein"" (TBP) probed by radiolytic protein footprinting. Biochemistry 42:3655-65
Uchida, Takeshi; Takamoto, Keiji; He, Qin et al. (2003) Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme. J Mol Biol 328:463-78
Taylor, Colleen M; Watton, Stephen P; Bryngelson, Peter A et al. (2003) Inner-sphere complexation of cobalt(II) 2,9-dimethyl-1,10-phenanthroline ([Co(neo)]2+) with commercial and sol-gel derived silica gel surfaces. Inorg Chem 42:312-20
Dhavan, Gauri M; Crothers, Donald M; Chance, Mark R et al. (2002) Concerted binding and bending of DNA by Escherichia coli integration host factor. J Mol Biol 315:1027-37
Uchida, Takeshi; He, Qin; Ralston, Corie Y et al. (2002) Linkage of monovalent and divalent ion binding in the folding of the P4-P6 domain of the Tetrahymena ribozyme. Biochemistry 41:5799-806
Tang, Qun; Carrington, Paul E; Horng, Yih-Chern et al. (2002) X-ray absorption and resonance Raman studies of methyl-coenzyme M reductase indicating that ligand exchange and macrocycle reduction accompany reductive activation. J Am Chem Soc 124:13242-56
Guan, Jing-Qu; Vorobiev, Sergeui; Almo, Steven C et al. (2002) Mapping the G-actin binding surface of cofilin using synchrotron protein footprinting. Biochemistry 41:5765-75

Showing the most recent 10 out of 68 publications