Bone age is determined using fluorescent bone markers. The monkeys were treated with different fluorochrome labels; first at baseline, then bi-annually, and just prior to necroscopy (2 years into the study). These fluorochromes are deposited into newly formed bone. HTetracycline, calcein, and alizarin complexone were used and they Hfluoresce yellow, green, and orange, respectively. Thus, bone age Hmarkers exist that distinguish bone that is (a) > 2 years old, (b) Hbetween 2 and 1.5 years old, (c) between 1.5 and 1 year old, and (d) < H1 year old. Especially for the ovariectomized monkeys, these fluorochrome markers will help us to determine how long after surgery changes in bone chemical composition occur and correlate these changes to the onset of osteoporosis. For osteoarthritis, the fluorescent markers and fluorescence-assisted IR-microspectroscopy will help distinguish between age-dependent and subchondral bone thickness-dependent changes in chemical composition.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001633-20
Application #
6618362
Study Section
Project Start
2002-09-01
Project End
2003-08-31
Budget Start
Budget End
Support Year
20
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Vongsvivut, Jitraporn; Fernandez, Jason; Ekgasit, Sanong et al. (2004) Characterization of supported cylinder-planar germanium waveguide sensors with synchrotron infrared radiation. Appl Spectrosc 58:143-51
Masip, Lluis; Pan, Jonathan L; Haldar, Suranjana et al. (2004) An engineered pathway for the formation of protein disulfide bonds. Science 303:1185-9
Huang, Raymond Y; Miller, Lisa M; Carlson, Cathy S et al. (2003) In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone 33:514-21
Rashidzadeh, Hassan; Khrapunov, Sergei; Chance, Mark R et al. (2003) Solution structure and interdomain interactions of the Saccharomyces cerevisiae ""TATA binding protein"" (TBP) probed by radiolytic protein footprinting. Biochemistry 42:3655-65
Uchida, Takeshi; Takamoto, Keiji; He, Qin et al. (2003) Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme. J Mol Biol 328:463-78
Taylor, Colleen M; Watton, Stephen P; Bryngelson, Peter A et al. (2003) Inner-sphere complexation of cobalt(II) 2,9-dimethyl-1,10-phenanthroline ([Co(neo)]2+) with commercial and sol-gel derived silica gel surfaces. Inorg Chem 42:312-20
Tang, Qun; Carrington, Paul E; Horng, Yih-Chern et al. (2002) X-ray absorption and resonance Raman studies of methyl-coenzyme M reductase indicating that ligand exchange and macrocycle reduction accompany reductive activation. J Am Chem Soc 124:13242-56
Guan, Jing-Qu; Vorobiev, Sergeui; Almo, Steven C et al. (2002) Mapping the G-actin binding surface of cofilin using synchrotron protein footprinting. Biochemistry 41:5765-75
Chance, Mark R; Bresnick, Anne R; Burley, Stephen K et al. (2002) Structural genomics: a pipeline for providing structures for the biologist. Protein Sci 11:723-38
Maleknia, Simin D; Kiselar, Janna G; Downard, Kevin M (2002) Hydroxyl radical probe of the surface of lysozyme by synchrotron radiolysis and mass spectrometry. Rapid Commun Mass Spectrom 16:53-61

Showing the most recent 10 out of 68 publications