Dr. Steven Almo, an x-ray crystallographer with significant synchrotron experience, has spearheaded a collaborative effort in conjunction with Dr. Zhong-Yin Zhang, an enzymologist, and Dr. David Lawrence, a synthetic chemist. The goal of this project is the structure-based design of potential therapeutic agents which bind to protein tyrosine phosphatases (PTPases), and the elucidation of the structures of novel PTPases. Since data collected on rotating anode sources at AECOM were of insufficient resolution, single-crystal diffraction data collected at beamline X9B has been absolutely essential for current progress. H Using synchrotron methods, Dr. Almo's group has solved the Hstructure of human protein tyrosine phosphatase 1B (PTP1B) in complex Hwith several different substrates, using 1.9A data collected at X9B. HThe complex of PTP1B and a synthetic high-affinity non-peptide Hsubstrate synthesized by the Lawrence group has demonstrated the Hexistence of a novel aryl phosphate binding site, which provides a new Hparadigm for the design of tight-binding inhibitors. This is the Hhighest resolution reported for this enzyme and this work has recently Hled to a publication in PNAS. Based on these findings, the Lawrence Hlab has synthesized a series second generation of PTP1B ligands that Hencompass both aryl phosphate functionalities and data has been Hcollected at X-9B on several different complexes.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001633-20
Application #
6618407
Study Section
Project Start
2002-09-01
Project End
2003-08-31
Budget Start
Budget End
Support Year
20
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Vongsvivut, Jitraporn; Fernandez, Jason; Ekgasit, Sanong et al. (2004) Characterization of supported cylinder-planar germanium waveguide sensors with synchrotron infrared radiation. Appl Spectrosc 58:143-51
Masip, Lluis; Pan, Jonathan L; Haldar, Suranjana et al. (2004) An engineered pathway for the formation of protein disulfide bonds. Science 303:1185-9
Huang, Raymond Y; Miller, Lisa M; Carlson, Cathy S et al. (2003) In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone 33:514-21
Rashidzadeh, Hassan; Khrapunov, Sergei; Chance, Mark R et al. (2003) Solution structure and interdomain interactions of the Saccharomyces cerevisiae ""TATA binding protein"" (TBP) probed by radiolytic protein footprinting. Biochemistry 42:3655-65
Uchida, Takeshi; Takamoto, Keiji; He, Qin et al. (2003) Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme. J Mol Biol 328:463-78
Taylor, Colleen M; Watton, Stephen P; Bryngelson, Peter A et al. (2003) Inner-sphere complexation of cobalt(II) 2,9-dimethyl-1,10-phenanthroline ([Co(neo)]2+) with commercial and sol-gel derived silica gel surfaces. Inorg Chem 42:312-20
Dewan, John C; Feeling-Taylor, Angela; Puius, Yoram A et al. (2002) Structure of mutant human carbonmonoxyhemoglobin C (betaE6K) at 2.0 A resolution. Acta Crystallogr D Biol Crystallogr 58:2038-42
Kiselar, J G; Maleknia, S D; Sullivan, M et al. (2002) Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry. Int J Radiat Biol 78:101-14
Swisher, Jennifer F; Su, Linhui J; Brenowitz, Michael et al. (2002) Productive folding to the native state by a group II intron ribozyme. J Mol Biol 315:297-310
Dhavan, Gauri M; Crothers, Donald M; Chance, Mark R et al. (2002) Concerted binding and bending of DNA by Escherichia coli integration host factor. J Mol Biol 315:1027-37

Showing the most recent 10 out of 68 publications