This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Since their discovery in the 1940s, the tetracycline class of antibiotics has been widely used against a broad range of Gram positive, Gram negative and more unusual targets such as Chlamydia and mycoplasmas. In addition to classic medicinal applications, chlortetracycline and oxytetracycline are commonly used at sub-therapeutic levels in animal feed as growth. As the tetracyclines have risen to become the most widely produced antibiotic, the number of resistant bacteria has increased to the point that they are nearly ubiquitous in clinical and agricultural settings. Resistance is typically conferred by either efflux of the drug (tetA) or ribsomal protection (tetM and tetO). Recently, a new enzymatic mechanism of resistance was discovered through drug inactivation (tetX). We have found crystallization conditions for tetX and are requesting beamtime for the collection of a MAD data set. Very small native crystals diffracted to 2.6 A at CHESS F1 (the crystal was shot by a colleague but was unable to collect data because of poor freezes). These freezing issues have since been resolved. We would like to collect both a native and MAD data set of the tetX protein as well as a soak of the drug-complex. Our studies are particularly relevant as one of the most recent antibiotics approved by the FDA is Tygacil  or tigilcycline, a member of the tetracycline class is readily inactivated by tetX.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001646-26
Application #
7721323
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2008-08-01
Project End
2009-06-30
Budget Start
2008-08-01
Budget End
2009-06-30
Support Year
26
Fiscal Year
2008
Total Cost
$20,871
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Xu, Jie; Kozlov, Guennadi; McPherson, Peter S et al. (2018) A PH-like domain of the Rab12 guanine nucleotide exchange factor DENND3 binds actin and is required for autophagy. J Biol Chem 293:4566-4574
Dean, Dexter N; Rana, Pratip; Campbell, Ryan P et al. (2018) Propagation of an A? Dodecamer Strain Involves a Three-Step Mechanism and a Key Intermediate. Biophys J 114:539-549
Chen, Yu Seby; Kozlov, Guennadi; Fakih, Rayan et al. (2018) The cyclic nucleotide-binding homology domain of the integral membrane protein CNNM mediates dimerization and is required for Mg2+ efflux activity. J Biol Chem 293:19998-20007
Kozlov, Guennadi; Wong, Kathy; Gehring, Kalle (2018) Crystal structure of the Legionella effector Lem22. Proteins 86:263-267
Ménade, Marie; Kozlov, Guennadi; Trempe, Jean-François et al. (2018) Structures of ubiquitin-like (Ubl) and Hsp90-like domains of sacsin provide insight into pathological mutations. J Biol Chem 293:12832-12842
Xu, Caishuang; Kozlov, Guennadi; Wong, Kathy et al. (2016) Crystal Structure of the Salmonella Typhimurium Effector GtgE. PLoS One 11:e0166643
Cogliati, Massimo; Zani, Alberto; Rickerts, Volker et al. (2016) Multilocus sequence typing analysis reveals that Cryptococcus neoformans var. neoformans is a recombinant population. Fungal Genet Biol 87:22-9
Oot, Rebecca A; Kane, Patricia M; Berry, Edward A et al. (2016) Crystal structure of yeast V1-ATPase in the autoinhibited state. EMBO J 35:1694-706
Lucido, Michael J; Orlando, Benjamin J; Vecchio, Alex J et al. (2016) Crystal Structure of Aspirin-Acetylated Human Cyclooxygenase-2: Insight into the Formation of Products with Reversed Stereochemistry. Biochemistry 55:1226-38
Bauman, Joseph D; Harrison, Jerry Joe E K; Arnold, Eddy (2016) Rapid experimental SAD phasing and hot-spot identification with halogenated fragments. IUCrJ 3:51-60

Showing the most recent 10 out of 375 publications