: MacCHESS, a synchrotron radiation Research Resource for macromolecular crystallography, has the overall goal of advancing the frontiers of structural biology through innovative technical research and development and user support. MacCHESS leverages the National Science Foundation investments in the Cornell High Energy Synchrotron Source (CHESS), which maintains the synchrotron radiation laboratory, and the Laboratory for Elementary Particle Physics (LEPP), which operates the storage ring. MacCHESS technical developments are driven by both core and collaborative research projects involving a broad range of macromolecules. In addition to performing technical R&D and core research, MacCHESS provides specialized instrumentation for macromolecular crystallography and a staff for user training and support. MacCHESS has established itself as one of the most productive facilities in the world for macromolecular crystallography with almost 400 papers published during the past four years as a result of MacCHESS related technical research and development, core and collaborative research and service. More than 23 of these papers were published in the high visibility journals, Science, Nature, and Cell. Three CHESS stations, A-1, F-1 and F-2, are used for macromolecular crystallography experiments. During the next five years, MacCHESS technical R&D will focus on (1) microcrystallography, (2) pressure crycooling and related procedures, (3) SAXS and envelope phasing, (4) automation and high-throughput, and (5) a new station for long wavelength crystallography. Each of these technical R&D efforts is driven by the challenging problems presented by collaborating investigators who study the atomic structure of molecules and complexes of great current interest to medicine and biology, including membrane proteins, signaling protein complexes, nucleic acid/protein complexes, protein drug interactions and viruses. Technical developments resulting from MacCHESS research are freely available to the scientific community and disseminated through meetings, workshops, publications, web distributions and collaborations with other synchrotron sources.
Showing the most recent 10 out of 375 publications