The primary objective of this study was the investigation of bioreduction kinetics of hydrophilic spin probes, Tempone, and spin-labeled antibiotic gentamicin by gram-negative bacteria maintained at various oxygen tension, with a special emphasis on the effect of probe penetration rate. This information was used to evaluate the effect of ultrasound on the penetration of hydrophilic compounds, including antibiotics, into P. aeruginosa and E. coli cells through porin channels. Penetration of spin-labeled compounds into the cells was assessed by the reduction rate of the nitroxyl moiety measured by EPR. It was found that probe penetration through the outer cell membrane affected the rate of probe reduction; when the permeability barrier was damaged by cell incubation with EDTA or by powerful insonation above the cavitation threshold, the rate of Tempone reduction by P. aeruginosa cells increased significantly. In contrast, onsonation below the cavitation threshold did not affect the rate of Tempone and spin labeled gentamicin reduction. These results are compared to the effect of insonation on the penetration of hydrophobic compounds into P. aeruginosa cells which proceeds through the phospholipid membrane and is increased by the insonation below the cavitation threshood.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001811-13
Application #
6120714
Study Section
Project Start
1998-04-15
Project End
1999-11-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
13
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
121911077
City
Chicago
State
IL
Country
United States
Zip Code
60612
Hurth, Kyle M; Nilges, Mark J; Carlson, Kathryn E et al. (2004) Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling. Biochemistry 43:1891-907
Woodmansee, Anh N; Imlay, James A (2002) Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem 277:34055-66
Denisov, Ilia G; Makris, Thomas M; Sligar, Stephen G (2002) Formation and decay of hydroperoxo-ferric heme complex in horseradish peroxidase studied by cryoradiolysis. J Biol Chem 277:42706-10
Atsarkin, V A; Demidov, V V; Vasneva, G A et al. (2001) Mechanism of oxygen response in carbon-based sensors. J Magn Reson 149:85-9
Mangels, M L; Harper, A C; Smirnov, A I et al. (2001) Investigating magnetically aligned phospholipid bilayers with EPR spectroscopy at 94 GHz. J Magn Reson 151:253-9
Breitzer, J G; Smirnov, A I; Szczepura, L F et al. (2001) Redox properties of C6S8(n-) and C3S5(n-) (n = 0, 1, 2): stable radicals and unusual structural properties for C-S-S-C bonds. Inorg Chem 40:1421-9
Denisov, I G; Hung, S C; Weiss, K E et al. (2001) Characterization of the oxygenated intermediate of the thermophilic cytochrome P450 CYP119. J Inorg Biochem 87:215-26
Kirkor, E S; Scheeline, A (2000) Nicotinamide adenine dinucleotide species in the horseradish peroxidase-oxidase oscillator. Eur J Biochem 267:5014-22
Rapoport, N; Smirnov, A I; Pitt, W G et al. (1999) Bioreduction of Tempone and spin-labeled gentamicin by gram-negative bacteria: kinetics and effect of ultrasound. Arch Biochem Biophys 362:233-41
Maringanti, S; Imlay, J A (1999) An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J Bacteriol 181:3792-802

Showing the most recent 10 out of 16 publications