It is well known that continuous-wave EPR spectra of nitroxide probes (labels) introduced into phospholipid bilayers are sensitive to molecular oxygen. However, accurate determination of oxygen broadening from these experiments is complicated by the complex shapes of EPR spectra, which are strongly influenced by anisotropic restricted motion of the probe molecules. An accurate method is presented to extract the oxygen broadening from the spectra measured with and without oxygen and at the same temperature. The method is based on a fast convolution algorithm with Levenberg-Marquardt optimization. This method was previously applied to EPR oximetry with nitroxides exhibiting rotational motion in the fast limit. It is shown that for several membrane spin probes, the oxygen broadening can be described as homogeneous; thus, a one-linewidth-parameter fitting model is appropriate. The method is applied to measure permeability profiles of model membranes composed from 1,2-dimyristoyl-sn-glycero -3-phosphocholine above and below the main phase transition. For both membrane phases, the broadening of doxyl- and sterol-type labels is found to be homogeneous, a finding consistent with the model of Heisenberg exchange between molecular oxygen and spin probes. As an example, the method is applied to study the ethanol effect on local oxygen permeability of a phospholipid bilayer. It is shown that ehanol concentrations as low as 1% (v/v) increase oxygen permeability of the bilayer. The effect is larger at the surface of the membrane than at its center, indicating that ethanol molecules interact primarily within the polar head region of the bilayer. This is an ongoing multi-year project.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001811-13
Application #
6120615
Study Section
Project Start
1998-04-15
Project End
1999-11-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
13
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
121911077
City
Chicago
State
IL
Country
United States
Zip Code
60612
Hurth, Kyle M; Nilges, Mark J; Carlson, Kathryn E et al. (2004) Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling. Biochemistry 43:1891-907
Woodmansee, Anh N; Imlay, James A (2002) Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem 277:34055-66
Denisov, Ilia G; Makris, Thomas M; Sligar, Stephen G (2002) Formation and decay of hydroperoxo-ferric heme complex in horseradish peroxidase studied by cryoradiolysis. J Biol Chem 277:42706-10
Atsarkin, V A; Demidov, V V; Vasneva, G A et al. (2001) Mechanism of oxygen response in carbon-based sensors. J Magn Reson 149:85-9
Mangels, M L; Harper, A C; Smirnov, A I et al. (2001) Investigating magnetically aligned phospholipid bilayers with EPR spectroscopy at 94 GHz. J Magn Reson 151:253-9
Breitzer, J G; Smirnov, A I; Szczepura, L F et al. (2001) Redox properties of C6S8(n-) and C3S5(n-) (n = 0, 1, 2): stable radicals and unusual structural properties for C-S-S-C bonds. Inorg Chem 40:1421-9
Denisov, I G; Hung, S C; Weiss, K E et al. (2001) Characterization of the oxygenated intermediate of the thermophilic cytochrome P450 CYP119. J Inorg Biochem 87:215-26
Kirkor, E S; Scheeline, A (2000) Nicotinamide adenine dinucleotide species in the horseradish peroxidase-oxidase oscillator. Eur J Biochem 267:5014-22
Rapoport, N; Smirnov, A I; Pitt, W G et al. (1999) Bioreduction of Tempone and spin-labeled gentamicin by gram-negative bacteria: kinetics and effect of ultrasound. Arch Biochem Biophys 362:233-41
Maringanti, S; Imlay, J A (1999) An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J Bacteriol 181:3792-802

Showing the most recent 10 out of 16 publications