The nonlinear modeling methodology of """"""""principal dynamic modes"""""""" (PDM) developed in Core Project #1, was applied to a spider mechanoreceptor. The fundamental question is the identification of the biophysical mechanisms that subserve mechanotransduction and the precise quantitative description of this process. The experiments (funded from other sources) employ broadband random stimuli and record either intracellularly or extracellularly. Results from the application of the PDM method to extracellular and intracellular recordings have shown excellent predictive ability of the resulting model, far exceeding the capabilities of previous models. Two PDM's have been identified in these preliminary studies, corresponding to two biophysical mechanisms: one that encodes intensity and another encoding rate of change. The latter PDM allows the mechanoreceptor to retain gain sensitivity at different operating points (adaptation). Comparisons between the results from intracellular and extracellular data were also made. This general approach can find application to other neural systems and, therefore, offers a powerful tool in a diverse and broad field of biological sciences.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001861-18
Application #
6611240
Study Section
Project Start
2002-09-01
Project End
2003-08-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
18
Fiscal Year
2002
Total Cost
$155,764
Indirect Cost
Name
University of Southern California
Department
Type
DUNS #
041544081
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Song, Dong; Wang, Haonan; Tu, Catherine Y et al. (2013) Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions. J Comput Neurosci 35:335-57
Hoppenbrouwers, Toke; Oliveira, Flavia; Sandarupa, Stanislaus et al. (2012) The development of the circadian heart rate rhythm (CHR) in Asian infants. Early Hum Dev 88:555-61
Wang, Xiaoning; Schumitzky, Alan; D'Argenio, David Z (2007) Nonlinear Random Effects Mixture Models: Maximum Likelihood Estimation via the EM Algorithm. Comput Stat Data Anal 51:6614-6623
Gholmieh, Ghassan; Courellis, Spiros; Marmarelis, Vasilis et al. (2007) Nonlinear dynamic model of CA1 short-term plasticity using random impulse train stimulation. Ann Biomed Eng 35:847-57
Gholmieh, Ghassan; Courellis, Spiros; Dimoka, Angelika et al. (2004) An algorithm for real-time extraction of population EPSP and population spike amplitudes from hippocampal field potential recordings. J Neurosci Methods 136:111-21
Ashjian, Peter; Elbarbary, Amir; Zuk, Patricia et al. (2004) Noninvasive in situ evaluation of osteogenic differentiation by time-resolved laser-induced fluorescence spectroscopy. Tissue Eng 10:411-20
Blasi, Anna; Jo, Javier; Valladares, Edwin et al. (2003) Cardiovascular variability after arousal from sleep: time-varying spectral analysis. J Appl Physiol 95:1394-404
Jo, Javier A; Blasi, Anna; Valladares, Edwin et al. (2003) Model-based assessment of autonomic control in obstructive sleep apnea syndrome during sleep. Am J Respir Crit Care Med 167:128-36
Belozeroff, Vasily; Berry, Richard B; Khoo, Michael C K (2003) Model-based assessment of autonomic control in obstructive sleep apnea syndrome. Sleep 26:65-73
Bading, James R; Yoo, Paul B; Fissekis, John D et al. (2003) Kinetic modeling of 5-fluorouracil anabolism in colorectal adenocarcinoma: a positron emission tomography study in rats. Cancer Res 63:3667-74

Showing the most recent 10 out of 84 publications