Toluene 4-monooxygenase (T4MO) catalyzes NADH- and O2-dependent conversion of toluene to p-cresol, and can also catalyze the adventitious oxidation of numerous other hydrocarbons such as indole, naphthalene, chloroform, and trichloroethylene. This four-protein complex consists of an NADH oxidoreductase, a catalytic effector protein, a diiron center-containing hydroxylase, and a small Mr soluble ferredoxin (T4MOC, 12,326Da). T4MOC is a monomeric protein which contains a Rieske-type iron sulfur center. Catalytic reconstitution studies have shown that T4MOC is obligately required for electron transfer between the oxidoreductase and diiron hydroxylase components. We will conduct research to determine 1D, 2D and 3D structures of T4MOC by using multinuclear high field NMR and isotopically labeled protein samples. These studies will provide electronic and dynamic information about correlations between redox states, proton exchange, and spin delocalization that may contribute to electron transfer reactions between Riseke and diiron centers. Moreover, by using the completely soluable T4MO enzyme system, we will study changes in T4MOC redox and protonation states, coordination geometry, and electron delocalization upon complex formation with T4MOH, in catalytically relevant electron transfer complexes.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR002301-15S1
Application #
6120980
Study Section
Project Start
1999-03-01
Project End
2000-02-29
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
15
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Travers, Timothy; López, Cesar A; Van, Que N et al. (2018) Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Sci Rep 8:8461
Thomas, Nathan E; Wu, Chao; Morrison, Emma A et al. (2018) The C terminus of the bacterial multidrug transporter EmrE couples drug binding to proton release. J Biol Chem 293:19137-19147
Assadi-Porter, Fariba M; Radek, James; Rao, Hongyu et al. (2018) Multimodal Ligand Binding Studies of Human and Mouse G-Coupled Taste Receptors to Correlate Their Species-Specific Sweetness Tasting Properties. Molecules 23:
Wijayatunga, Nadeeja N; Sams, Valerie G; Dawson, John A et al. (2018) Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes Metab Res Rev 34:e3045
Assadi-Porter, Fariba M; Reiland, Hannah; Sabatini, Martina et al. (2018) Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression. Int J Mol Sci 19:
Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram et al. (2018) Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. MBio 9:
Franco, Aldo; Dovell, Sanaz; Möller, Carolina et al. (2018) Structural plasticity of mini-M conotoxins - expression of all mini-M subtypes by Conus regius. FEBS J 285:887-902
Wales, Jessica A; Chen, Cheng-Yu; Breci, Linda et al. (2018) Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase. J Biol Chem 293:1850-1864
Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina et al. (2017) Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol Rep 5:
Mong, Surin K; Cochran, Frank V; Yu, Hongtao et al. (2017) Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 56:5720-5725

Showing the most recent 10 out of 613 publications