The variability of hydrogen isotope ratios (H/D ratios) in plant material is not well understood. This is supposedly caused by interacting climatic factors (H/D ratio of precipitation) and physiological influences on the internal D distribution of metabolites. This project aims at isolating physiological influences using D NMR. Specifically, plants' responses to growth under increased CO2 and other parameters will be examined. The methodology to obtain well resolved D NMR spectra of glucose has been developed. Preliminary results on glucose from spinach indicate that the intensity of the D signal in the pro-R position of C(6) (C(6)-DR) increases by approximately 12% in plants grown under increased CO2. The intensity of C(4)-D is reduced by approximately 20% upon growth under increased CO2 and low light levels. The effects are localized to these positions and seem not to influence each other. The near-term goal of this project is to reproduce the observed effects with a larger number of plants. Experiments are planned to test hypothyses about the cause of the effects and to observe such effects in natural plant material. The long term goal of this project is to use internal D distributions to monitor plants' responses to atmospheric CO2 increase. Several other applications of the technique (e.g., in plant breeding programs) are conceivable.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002301-18
Application #
6575323
Study Section
Project Start
2002-03-01
Project End
2003-02-28
Budget Start
Budget End
Support Year
18
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Travers, Timothy; López, Cesar A; Van, Que N et al. (2018) Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Sci Rep 8:8461
Thomas, Nathan E; Wu, Chao; Morrison, Emma A et al. (2018) The C terminus of the bacterial multidrug transporter EmrE couples drug binding to proton release. J Biol Chem 293:19137-19147
Assadi-Porter, Fariba M; Radek, James; Rao, Hongyu et al. (2018) Multimodal Ligand Binding Studies of Human and Mouse G-Coupled Taste Receptors to Correlate Their Species-Specific Sweetness Tasting Properties. Molecules 23:
Wijayatunga, Nadeeja N; Sams, Valerie G; Dawson, John A et al. (2018) Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes Metab Res Rev 34:e3045
Assadi-Porter, Fariba M; Reiland, Hannah; Sabatini, Martina et al. (2018) Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression. Int J Mol Sci 19:
Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram et al. (2018) Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. MBio 9:
Franco, Aldo; Dovell, Sanaz; Möller, Carolina et al. (2018) Structural plasticity of mini-M conotoxins - expression of all mini-M subtypes by Conus regius. FEBS J 285:887-902
Wales, Jessica A; Chen, Cheng-Yu; Breci, Linda et al. (2018) Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase. J Biol Chem 293:1850-1864
Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina et al. (2017) Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol Rep 5:
Mong, Surin K; Cochran, Frank V; Yu, Hongtao et al. (2017) Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 56:5720-5725

Showing the most recent 10 out of 613 publications