This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The flavoenzyme UDP-galactopyranose mutase (UGM) catalyzes the interconversion of UDP-galactopyranose and UDP-galactofuranose. Galactofuranose residues, which are not found in mammalian cells, are then incorporated into the cell walls of certain bacteria, including Mycobacterium tuberculosis, making UGM an attractive drug target. UGM is a flavoenzyme, but the precise role of the cofactor has been unclear due to the lack of reduction/oxidation chemistry in this isomerization. We propose that turnover occurs by a covalent flavin-galactose iminium species. Using NaCNBH3 to trap this adduct, analysis of the resulting species by LCMS shows a peak corresponding to the molecular weight of the proposed alkylated flavin, as well as an absorbance spectrum indicative of an N(5) alkylflavin. In order to investigate how the enzyme allows for this unique chemistry, we have begun to mutate conserved residues around the active site in order to establish the mechanistic roles of certain amino acids. A protocol for removal of the noncovalently bound flavin and replacement with isotopically labeled flavin has been developed to allow for NMR studies of the flavin binding site, as well as to use NMR to visualize the connectivities of the covalent alkylflavin.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002301-23
Application #
7721619
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2008-03-01
Project End
2009-02-28
Budget Start
2008-03-01
Budget End
2009-02-28
Support Year
23
Fiscal Year
2008
Total Cost
$2,028
Indirect Cost
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Earth Sciences/Natur
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Travers, Timothy; López, Cesar A; Van, Que N et al. (2018) Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Sci Rep 8:8461
Thomas, Nathan E; Wu, Chao; Morrison, Emma A et al. (2018) The C terminus of the bacterial multidrug transporter EmrE couples drug binding to proton release. J Biol Chem 293:19137-19147
Assadi-Porter, Fariba M; Radek, James; Rao, Hongyu et al. (2018) Multimodal Ligand Binding Studies of Human and Mouse G-Coupled Taste Receptors to Correlate Their Species-Specific Sweetness Tasting Properties. Molecules 23:
Wijayatunga, Nadeeja N; Sams, Valerie G; Dawson, John A et al. (2018) Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes Metab Res Rev 34:e3045
Assadi-Porter, Fariba M; Reiland, Hannah; Sabatini, Martina et al. (2018) Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression. Int J Mol Sci 19:
Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram et al. (2018) Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. MBio 9:
Franco, Aldo; Dovell, Sanaz; Möller, Carolina et al. (2018) Structural plasticity of mini-M conotoxins - expression of all mini-M subtypes by Conus regius. FEBS J 285:887-902
Wales, Jessica A; Chen, Cheng-Yu; Breci, Linda et al. (2018) Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase. J Biol Chem 293:1850-1864
Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina et al. (2017) Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol Rep 5:
Mong, Surin K; Cochran, Frank V; Yu, Hongtao et al. (2017) Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 56:5720-5725

Showing the most recent 10 out of 613 publications