This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The human sweet receptor, composed of the monomers T1R2 + T1R3, appears to be the main (and perhaps the only) receptor required to explain sweet taste in humans. When co-expressed with a reporter G-protein in heterologous systems, this heterodimeric receptor responds to the full range of sweet-tasting compounds sensed by humans at concentrations that humans taste. The sweet receptor responds to a surprisingly diverse set of ligands, from small amino acids to moderately sized sweet-tasting plant proteins. No common structure accounts for the sweetness of all of these compounds. Studies from our lab and others indicate that the sweet receptor can be activated by means of a variety of domains and distinct binding sites on the receptor. We have used this diversity in sweet receptor activity as a tool for understanding ligand - receptor interactions as well as for probing the molecular events that lead to activation of this complex receptor. By using heterologous expression, calcium imaging, BRET and mutagenesis and computational modeling in my laboratory and those of my colleagues, we have mapped sweetener binding to at least three domains of the sweet receptor: the venus fly trap module (VFTM) of hT1R2 (various small molecule artificial sweeteners, natural sugars and dipeptide sweeteners), the cysteine-rich domain (CRD) of hT1R3 (brazzein), and the transmembrane domain (TMD) of hT1R3 (cyclamate and NHDC). To date, no sweeteners have been shown to bind in the TMD of T1R2, however, our recent finding suggests that this domain is able to allosterically regulate ligand-induced activity in the sweet receptor. In this proposal, we propose to further determine the characteristics of the hT1R2 TMD that promotes allosteric interactions with other domains of the receptor. We will also determine whether any sweeteners map to its putative intra-helical TMD binding site. In addition to our established techniques (heterologous expression of receptors, mutagenesis, functional assay and computational modeling) for exploring sweetener interactions with the sweet receptor, our collaborator, Fariba Assadi-Porter will use saturation transfer difference (STD) NMR to track ligand-binding to cells expressing full length T1R2 + T1R3 together, each monomer by itself, mutants receptors or parent cells not expressing receptors. This exciting new development will allow us to monitor ligand binding separate from receptor activity. It will also allow us to determine and identify the critical ligand-receptor binding sites that determine sensitivity and selectivity for ligands, in addition to the effect of sweet receptor mutations on the ligand-binding pocket environment(s) by monitoring changes in the NMR spectra for each ligand.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
Schools of Earth Sciences/Natur
United States
Zip Code
Travers, Timothy; López, Cesar A; Van, Que N et al. (2018) Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Sci Rep 8:8461
Thomas, Nathan E; Wu, Chao; Morrison, Emma A et al. (2018) The C terminus of the bacterial multidrug transporter EmrE couples drug binding to proton release. J Biol Chem 293:19137-19147
Assadi-Porter, Fariba M; Radek, James; Rao, Hongyu et al. (2018) Multimodal Ligand Binding Studies of Human and Mouse G-Coupled Taste Receptors to Correlate Their Species-Specific Sweetness Tasting Properties. Molecules 23:
Wijayatunga, Nadeeja N; Sams, Valerie G; Dawson, John A et al. (2018) Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes Metab Res Rev 34:e3045
Assadi-Porter, Fariba M; Reiland, Hannah; Sabatini, Martina et al. (2018) Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression. Int J Mol Sci 19:
Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram et al. (2018) Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. MBio 9:
Franco, Aldo; Dovell, Sanaz; Möller, Carolina et al. (2018) Structural plasticity of mini-M conotoxins - expression of all mini-M subtypes by Conus regius. FEBS J 285:887-902
Wales, Jessica A; Chen, Cheng-Yu; Breci, Linda et al. (2018) Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase. J Biol Chem 293:1850-1864
Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina et al. (2017) Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol Rep 5:
Mong, Surin K; Cochran, Frank V; Yu, Hongtao et al. (2017) Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 56:5720-5725

Showing the most recent 10 out of 613 publications