This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. De-scalping the brain is a very critical step in MRI data post-processing and analyzing. Most common areas of application are visualization, surface rendering, image registration, DTI and perfusion MRI data post-processing, and decreasing the complexity of subsequent processing algorithms. Many applications related to brain MRI either require, or benefits from the ability to accurately segment brain from the non-brain tissue. De-scalping is one of the interesting and challenging problems in MRI and a number of techniques have been developed for accomplishing it. A recent study published by Fennema-Notestine et al. (2006) concluded that existing algorithms had both strengths and weaknesses, but that no single algorithm was robust enough across different sequences. There is still a need for simple and robust methods for accurate de-scalping. Here we present a new simple technique for brain de-scalping. This technique is based upon lipid ratio map computed using with and without lipid saturation images, which are routinely acquired on most of the clinical scanners.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR002305-26
Application #
8169081
Study Section
Special Emphasis Panel (ZRG1-SBIB-Q (40))
Project Start
2010-06-01
Project End
2011-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
26
Fiscal Year
2010
Total Cost
$34,688
Indirect Cost
Name
University of Pennsylvania
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Pang, Henry; Bow, Cora; Cheung, Jason Pui Yin et al. (2018) The UTE Disc Sign on MRI: A Novel Imaging Biomarker Associated With Degenerative Spine Changes, Low Back Pain, and Disability. Spine (Phila Pa 1976) 43:503-511
Ferraro, Pilar M; Jester, Charles; Olm, Christopher A et al. (2018) Perfusion alterations converge with patterns of pathological spread in transactive response DNA-binding protein 43 proteinopathies. Neurobiol Aging 68:85-92
Ercan, Altan; Kohrt, Wendy M; Cui, Jing et al. (2017) Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2:e89703
Yadav, Santosh K; Kathiresan, Nagarajan; Mohan, Suyash et al. (2016) Gender-based analysis of cortical thickness and structural connectivity in Parkinson's disease. J Neurol 263:2308-2318
Finkelstein, Joel S; Lee, Hang; Leder, Benjamin Z et al. (2016) Gonadal steroid-dependent effects on bone turnover and bone mineral density in men. J Clin Invest 126:1114-25
Rosenbaum, Michael; Leibel, Rudolph L (2016) Models of energy homeostasis in response to maintenance of reduced body weight. Obesity (Silver Spring) 24:1620-9
Machida, Manabu; Panasyuk, George Y; Wang, Zheng-Min et al. (2016) Radiative transport and optical tomography with large datasets. J Opt Soc Am A Opt Image Sci Vis 33:551-8
Ban, H Y; Schweiger, M; Kavuri, V C et al. (2016) Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry. Med Phys 43:4383
Xie, Long; Dolui, Sudipto; Das, Sandhitsu R et al. (2016) A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment. Neuroimage Clin 11:388-397
McCarthy, Ann L; Winters, Madeline E; Busch, David R et al. (2015) Scoring system for periventricular leukomalacia in infants with congenital heart disease. Pediatr Res 78:304-9

Showing the most recent 10 out of 414 publications