This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Commonly, PEPCK is considered the most important of the control points for gluconeogenesis. However, this fundamental dogma is difficult to test because it would require the combination of in vivo control of enzyme expression and the ability to measure flux through the enzymes of intact tissue. Magnuson and co-workers have generated mice with PEPCK expression ranging from 0-100% of normal mice by using an allelogenic Cre/loxP strategy. We are collaborating with Dr. Burgess in the Advanced Imaging Center to measure fluxes in the intact liver of mice generated at Vanderbilt with graded levels of PEPCK expression. This arrangement offers a unique and important opportunity to understand the control of PEPCK in the intact liver (and eventually kidney) on gluconeogenesis and other peripheral pathways such as fatty acid oxidation. The connection between PEPCK and metabolic pathways besides gluconeogenesis is highlighted by the observation that inhibiting PEPCK expression induces hepatic steatosis and causes large increases in certain intermediate pool sizes. The development of hepatic steatosis in the PEPCK KO mouse seems paradoxical in light of the fact that the enzymes of -oxidation are actually up-regulated. Measuring flux through these metabolic pathways of the liver and kidney of these mice will help us better understand the position of control this enzyme occupies in the gluconeogenic pathway. Our recent data along this line of investigation makes two striking points. First, a total knockout of hepatic PEPCK results in severe alterations of hepatic energy fluxes resulting in dramatically impaired TCA cycle turnover. This is reduction in flux is accompanied by a more reduced mitochondrial redox state which implies that the reduced energy requirements associated with absent gluconeogenesis is to blame. Secondly, our studies in a mouse strain that expresses only 10% of the normal PEPCK levels have shown that these mice do not have dramatic alterations of gluconeogenesis or hepatic energy metabolism (Figure 1). This surprising result clearly suggests that the PEPCK does not play an important practical role in regulated hepatic gluconeogenesis. Further experiments will be performed on mice with 5% and 50% PEPCK expression to better define the curve. This project would not be possible without a strong collaborative relationship with Dr. Burgess who has taken the lead in the metabolic studies of these mice. To assure success, we require access to the 14.1T magnet for 13C and 2H analysis of tissue extracts. We also need to use the shared lab space for organ perfusion experiments and analytical instruments such as the UV spectrophotometer, HPLC and solution phase synthesizer. The combination of transgenic mouse models (PEPCK KO and models of diabetes) and the determination of enzyme activities in intact tissues and whole animals by NMR is a profound new step in this field and will allow us to probe the relationships between the biochemical pathways of gluconeogenesis and energy production.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002584-21
Application #
7724113
Study Section
Special Emphasis Panel (ZRG1-SBIB-Q (40))
Project Start
2008-09-01
Project End
2009-08-31
Budget Start
2008-09-01
Budget End
2009-08-31
Support Year
21
Fiscal Year
2008
Total Cost
$10,458
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James et al. (2018) MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors. PLoS One 13:e0198065
Mishkovsky, Mor; Anderson, Brian; Karlsson, Magnus et al. (2017) Measuring glucose cerebral metabolism in the healthy mouse using hyperpolarized 13C magnetic resonance. Sci Rep 7:11719
Moreno, Karlos X; Harrison, Crystal E; Merritt, Matthew E et al. (2017) Hyperpolarized ?-[1-13 C]gluconolactone as a probe of the pentose phosphate pathway. NMR Biomed 30:
Funk, Alexander M; Anderson, Brian L; Wen, Xiaodong et al. (2017) The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose. J Magn Reson 284:86-93
Zhang, Liang; Habib, Amyn A; Zhao, Dawen (2016) Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging. Oncotarget 7:38693-38706
Walker, Christopher M; Merritt, Matthew; Wang, Jian-Xiong et al. (2016) Use of a Multi-compartment Dynamic Single Enzyme Phantom for Studies of Hyperpolarized Magnetic Resonance Agents. J Vis Exp :e53607
Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C et al. (2016) pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent. Magn Reson Med 75:2432-41
Malloy, Craig R; Sherry, A Dean (2016) Biochemical Specificity in Human Cardiac Imaging by 13C Magnetic Resonance Imaging. Circ Res 119:1146-1148
Moss, Lacy R; Mulik, Rohit S; Van Treuren, Tim et al. (2016) Investigation into the distinct subcellular effects of docosahexaenoic acid loaded low-density lipoprotein nanoparticles in normal and malignant murine liver cells. Biochim Biophys Acta 1860:2363-2376
Bastiaansen, Jessica A M; Merritt, Matthew E; Comment, Arnaud (2016) Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate. Sci Rep 6:25573

Showing the most recent 10 out of 374 publications