The objective is identify various fluorescent biochemical and morphological components in bladder tissues using fluorescence microscopy. Frozen sections of bladder tissue were imaged with a fluorescent microscope. Serial sections were stained and reviewed by a pathologist. At 370 nm and 400 nm excitation, invasive cancer had little fluorescence other than what appeared to be scattered tiny collagen fragments and occasional inflammatory cells. For the other tissue diagnoses, epithelium had either no or undetectable fluorescence. Collagen strands in the submucosa, appearing as blue strings, were the primary fluorophore, although occasional yellowish-green spots that seem to be inflammatory cells also appeared. The lack of fluorescence of the invasive cancer explains the much weakened fluorescence spectra observed. The absence of epithelial fluorescence was not expected based on the observation earlier of dysplastic crypt cell fluorescence in the colon. In images ta ken of CIS, the submucosa exhibited fewer fluorescencing collagen strands, but in view of recent cystectomy results, the corresponding stained slides need to be closely checked for edema or hemorrhage which might play a role in this change in the submucosa. Analysis and interpretation of these microscope images is still ongoing.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002594-14
Application #
6121249
Study Section
Project Start
1999-06-01
Project End
2000-05-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
14
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Shih, Wei-Chuan; Bechtel, Kate L; Rebec, Mihailo V (2015) Noninvasive glucose sensing by transcutaneous Raman spectroscopy. J Biomed Opt 20:051036
Dudzik, Jonathan; Chang, Wen-Chi; Kannan, A M et al. (2013) Cross-linked glucose oxidase clusters for biofuel cell anode catalysts. Biofabrication 5:035009
Sathyavathi, R; Dingari, Narahara Chari; Barman, Ishan et al. (2013) Raman spectroscopy provides a powerful, rapid diagnostic tool for the detection of tuberculous meningitis in ex vivo cerebrospinal fluid samples. J Biophotonics 6:567-72
Dingari, Narahara Chari; Barman, Ishan; Saha, Anushree et al. (2013) Development and comparative assessment of Raman spectroscopic classification algorithms for lesion discrimination in stereotactic breast biopsies with microcalcifications. J Biophotonics 6:371-81
Cooper, Kimberly L; Oh, Seungeun; Sung, Yongjin et al. (2013) Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495:375-8
Sung, Yongjin; Tzur, Amit; Oh, Seungeun et al. (2013) Size homeostasis in adherent cells studied by synthetic phase microscopy. Proc Natl Acad Sci U S A 110:16687-92
Lau, Condon; Mirkovic, Jelena; Yu, Chung-Chieh et al. (2013) Early detection of high-grade squamous intraepithelial lesions in the cervix with quantitative spectroscopic imaging. J Biomed Opt 18:76013
Soares, Jaqueline S; Barman, Ishan; Dingari, Narahara Chari et al. (2013) Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proc Natl Acad Sci U S A 110:471-6
Barman, Ishan; Dingari, Narahara Chari; Kang, Jeon Woong et al. (2012) Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin. Anal Chem 84:2474-82
Kalashnikov, Maxim; Choi, Wonshik; Hunter, Martin et al. (2012) Assessing the contribution of cell body and intracellular organelles to the backward light scattering. Opt Express 20:816-26

Showing the most recent 10 out of 178 publications