The objective is to develop surface-enhanced Raman scattering (SERS) as an ultrasensitive analytical tool in chemistry, biology, and medicine. SERS effect combines sensitivity of the fluorescence spectroscopy with high structural information content of Raman spectroscopy, and can be used for single molecule detection and identification. Recently, we have achieved single molecule detection and identification of """"""""non-absorbing""""""""molecules by using specially prepared colloidal clusters and non resonant excitation. Extremely large SERS enhancement factors on the order of 1014 were obtained at near infra red excitation for aggregated colloidal silver particles. We have also demonstrated this enhancement does not involve contribution from molecular mechanisms. Because of this, the method is not only applicable to dye molecules but also to colorless molecules, thus extending the applicability to biological molecules.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002594-15
Application #
6314175
Study Section
Project Start
2000-06-01
Project End
2001-05-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
15
Fiscal Year
2000
Total Cost
$13,842
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Shih, Wei-Chuan; Bechtel, Kate L; Rebec, Mihailo V (2015) Noninvasive glucose sensing by transcutaneous Raman spectroscopy. J Biomed Opt 20:051036
Dudzik, Jonathan; Chang, Wen-Chi; Kannan, A M et al. (2013) Cross-linked glucose oxidase clusters for biofuel cell anode catalysts. Biofabrication 5:035009
Sathyavathi, R; Dingari, Narahara Chari; Barman, Ishan et al. (2013) Raman spectroscopy provides a powerful, rapid diagnostic tool for the detection of tuberculous meningitis in ex vivo cerebrospinal fluid samples. J Biophotonics 6:567-72
Dingari, Narahara Chari; Barman, Ishan; Saha, Anushree et al. (2013) Development and comparative assessment of Raman spectroscopic classification algorithms for lesion discrimination in stereotactic breast biopsies with microcalcifications. J Biophotonics 6:371-81
Cooper, Kimberly L; Oh, Seungeun; Sung, Yongjin et al. (2013) Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495:375-8
Sung, Yongjin; Tzur, Amit; Oh, Seungeun et al. (2013) Size homeostasis in adherent cells studied by synthetic phase microscopy. Proc Natl Acad Sci U S A 110:16687-92
Lau, Condon; Mirkovic, Jelena; Yu, Chung-Chieh et al. (2013) Early detection of high-grade squamous intraepithelial lesions in the cervix with quantitative spectroscopic imaging. J Biomed Opt 18:76013
Soares, Jaqueline S; Barman, Ishan; Dingari, Narahara Chari et al. (2013) Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proc Natl Acad Sci U S A 110:471-6
Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R et al. (2012) Anisotropic light scattering of individual sickle red blood cells. J Biomed Opt 17:040501
Saha, Anushree; Barman, Ishan; Dingari, Narahara Chari et al. (2012) Precision of Raman spectroscopy measurements in detection of microcalcifications in breast needle biopsies. Anal Chem 84:6715-22

Showing the most recent 10 out of 178 publications