This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We have demonstrated excellent results in diagnosing normal, two types of benign lesions and malignant lesions on freshly excised tissue using Raman spectroscopy. The study thus supported moving the technique to a clinical setting for further testing of its efficacy in breast cancer diagnosis. As a result, we pursued clinical study. We collected data in the University Hospitals of Cleveland pathology suite, typically within half an hour of excision during partial and whole mastectomy. The main goals of this study was to validate our in vitro diagnostic algorithm on a large data set which closely mimics an in vivo environment and to elucidate differences between the Raman spectra of fresh-frozen and fresh breast tissues. Another clinical study is scheduled. The main goal of this study is expanding our diagnostic algorithm to include pathologies not seen previously in our studies, such as ductal carcinoma in situ and microcalcifications.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002594-24
Application #
7955853
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
24
Fiscal Year
2009
Total Cost
$28,535
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Internal Medicine/Medicine
Type
Schools of Arts and Sciences
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Shih, Wei-Chuan; Bechtel, Kate L; Rebec, Mihailo V (2015) Noninvasive glucose sensing by transcutaneous Raman spectroscopy. J Biomed Opt 20:051036
Dudzik, Jonathan; Chang, Wen-Chi; Kannan, A M et al. (2013) Cross-linked glucose oxidase clusters for biofuel cell anode catalysts. Biofabrication 5:035009
Sathyavathi, R; Dingari, Narahara Chari; Barman, Ishan et al. (2013) Raman spectroscopy provides a powerful, rapid diagnostic tool for the detection of tuberculous meningitis in ex vivo cerebrospinal fluid samples. J Biophotonics 6:567-72
Dingari, Narahara Chari; Barman, Ishan; Saha, Anushree et al. (2013) Development and comparative assessment of Raman spectroscopic classification algorithms for lesion discrimination in stereotactic breast biopsies with microcalcifications. J Biophotonics 6:371-81
Cooper, Kimberly L; Oh, Seungeun; Sung, Yongjin et al. (2013) Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495:375-8
Sung, Yongjin; Tzur, Amit; Oh, Seungeun et al. (2013) Size homeostasis in adherent cells studied by synthetic phase microscopy. Proc Natl Acad Sci U S A 110:16687-92
Lau, Condon; Mirkovic, Jelena; Yu, Chung-Chieh et al. (2013) Early detection of high-grade squamous intraepithelial lesions in the cervix with quantitative spectroscopic imaging. J Biomed Opt 18:76013
Soares, Jaqueline S; Barman, Ishan; Dingari, Narahara Chari et al. (2013) Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proc Natl Acad Sci U S A 110:471-6
Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R et al. (2012) Anisotropic light scattering of individual sickle red blood cells. J Biomed Opt 17:040501
Saha, Anushree; Barman, Ishan; Dingari, Narahara Chari et al. (2012) Precision of Raman spectroscopy measurements in detection of microcalcifications in breast needle biopsies. Anal Chem 84:6715-22

Showing the most recent 10 out of 178 publications