This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We used two-photon-fluorescence microscopy to investigate the effects of pressure on the lateral organization of lipids on the membrane of Giant Unilamellar Vesicles (GUVs). GUVs of the size of few microns were grown by electroformation onto platinum electrodes. After detaching the vesicles from the electrodes, they were sucked into transparent quartz capillaries with an inner diameter of 50 mm and an outer diameter of 360 mm. Pressure can be applied to the vesicles inside the capillaries sealing one end and connecting the other to a high pressure pump. This system allows using high N.A. immersion objectives to observe the surface of the vesicles with high spatial resolution. It was shown that the behavior of single molecules and fluctuation experiments can be performed under high hydrostatic pressure. We used LAURDAN to label the GUVs. The emission spectrum of this fluorescent probe is sensitive to the degree of water penetration into the lipid membrane. For this reason, LAURDAN can be used to detect the phase state of the lipid membrane. The spectral shift of LAURDAN (of more than 40 nm between the liquid and the gel lipid phase) is quantified in the GUV images by using the GP function.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR003155-21
Application #
7357974
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (41))
Project Start
2006-08-29
Project End
2007-07-31
Budget Start
2006-08-29
Budget End
2007-07-31
Support Year
21
Fiscal Year
2006
Total Cost
$77,583
Indirect Cost
Name
University of California Irvine
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Kim, Seong M; Nguyen, Tricia T; Ravi, Archna et al. (2018) PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. Cancer Discov 8:866-883
Liang, Elena I; Mah, Emma J; Yee, Albert F et al. (2017) Correlation of focal adhesion assembly and disassembly with cell migration on nanotopography. Integr Biol (Camb) 9:145-155
Chen, Hongtao; Gratton, Enrico; Digman, Michelle A (2016) Self-assisted optothermal trapping of gold nanorods under two-photon excitation. Methods Appl Fluoresc 4:035003
Digiacomo, Luca; Digman, Michelle A; Gratton, Enrico et al. (2016) Development of an image Mean Square Displacement (iMSD)-based method as a novel approach to study the intracellular trafficking of nanoparticles. Acta Biomater 42:189-198
Malacrida, Leonel; Astrada, Soledad; Briva, Arturo et al. (2016) Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures. Biochim Biophys Acta 1858:2625-2635
Chen, Hongtao; Gratton, Enrico; Digman, Michelle A (2015) Spectral properties and dynamics of gold nanorods revealed by EMCCD-based spectral phasor method. Microsc Res Tech 78:283-93
Golfetto, Ottavia; Hinde, Elizabeth; Gratton, Enrico (2015) The Laurdan spectral phasor method to explore membrane micro-heterogeneity and lipid domains in live cells. Methods Mol Biol 1232:273-90
Willenberg, Rafer; Steward, Oswald (2015) Nonspecific labeling limits the utility of Cre-Lox bred CST-YFP mice for studies of corticospinal tract regeneration. J Comp Neurol 523:2665-82
Jaureguiberry, MarĂ­a S; Tricerri, M Alejandra; Sanchez, Susana A et al. (2014) Role of plasma membrane lipid composition on cellular homeostasis: learning from cell line models expressing fatty acid desaturases. Acta Biochim Biophys Sin (Shanghai) 46:273-82
Scarlata, Suzanne; Golebiewska, Urszula (2014) Linking alpha-synuclein properties with oxidation: a hypothesis on a mechanism underling cellular aggregation. J Bioenerg Biomembr 46:93-8

Showing the most recent 10 out of 200 publications