This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.FULL TITLE: Digital Frequency Domain Heterodyning Fluorescence Lifetime Acquisition Module for Laser Scanning Microscopy SystemThis project is to design and implement a fluorescence lifetime acquisition module for laser scanning confocal microscopes based on Field Programmable Gate Array (FPGA) technology. The basic challenge of measuring fluorescence lifetime is to accurately determine the time between the excitation and the emission on the nanosecond timescale. The FPGA chip allows the implementation of digital frequency-domain heterodyning on the order of 100MHz to measure fluorescence lifetime decays with an improved duty-cycle and ease of use over analog frequency-domain techniques, and significantly lower cost than time-domain techniques. The principle of the digital frequency domain heterodyning method is described. The operation was implemented in a particular FPGA chip and used in a commercial laser scanning microscope. Preliminary results include the measurement of known lifetime samples to illustrate the sensitivity and noise characteristics of this device. Future work will extend to the biological applications to demonstrate the determination of cellular activities with fluorescence lifetime imaging microscopy (FLIM).

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR003155-23
Application #
7724032
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (41))
Project Start
2008-08-01
Project End
2009-07-31
Budget Start
2008-08-01
Budget End
2009-07-31
Support Year
23
Fiscal Year
2008
Total Cost
$21,824
Indirect Cost
Name
University of California Irvine
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Kim, Seong M; Nguyen, Tricia T; Ravi, Archna et al. (2018) PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. Cancer Discov 8:866-883
Liang, Elena I; Mah, Emma J; Yee, Albert F et al. (2017) Correlation of focal adhesion assembly and disassembly with cell migration on nanotopography. Integr Biol (Camb) 9:145-155
Chen, Hongtao; Gratton, Enrico; Digman, Michelle A (2016) Self-assisted optothermal trapping of gold nanorods under two-photon excitation. Methods Appl Fluoresc 4:035003
Digiacomo, Luca; Digman, Michelle A; Gratton, Enrico et al. (2016) Development of an image Mean Square Displacement (iMSD)-based method as a novel approach to study the intracellular trafficking of nanoparticles. Acta Biomater 42:189-198
Malacrida, Leonel; Astrada, Soledad; Briva, Arturo et al. (2016) Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures. Biochim Biophys Acta 1858:2625-2635
Chen, Hongtao; Gratton, Enrico; Digman, Michelle A (2015) Spectral properties and dynamics of gold nanorods revealed by EMCCD-based spectral phasor method. Microsc Res Tech 78:283-93
Golfetto, Ottavia; Hinde, Elizabeth; Gratton, Enrico (2015) The Laurdan spectral phasor method to explore membrane micro-heterogeneity and lipid domains in live cells. Methods Mol Biol 1232:273-90
Willenberg, Rafer; Steward, Oswald (2015) Nonspecific labeling limits the utility of Cre-Lox bred CST-YFP mice for studies of corticospinal tract regeneration. J Comp Neurol 523:2665-82
Scarlata, Suzanne; Golebiewska, Urszula (2014) Linking alpha-synuclein properties with oxidation: a hypothesis on a mechanism underling cellular aggregation. J Bioenerg Biomembr 46:93-8
Sharma, Himanshu; Digman, Michelle A; Felsinger, Natasha et al. (2014) Enhanced emission of fluorophores on shrink-induced wrinkled composite structures. Opt Mater Express 4:753-763

Showing the most recent 10 out of 200 publications