This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The neuropeptide Substance P (SP) is involved in detection of noxious stimuli (nociception) by the nervous system. SP may diffuse several micrometres from neuronal release sites to target neurons which express the Neurokinin 1 receptor (NK1, """"""""non-synaptic transmission""""""""). How far neuropeptides can diffuse and how they interact within complex micro-environments surrounding their receptors remains unknown. This project will characterise the diffusion and receptor-binding kinetics of SP on NK1 receptor-expressing cell lines using Raster Image Correlation Spectroscopy (RICS). In addition, the interaction of the vasoconstrictor hormone Angiotensin II (AngII) and the AngiotensinII type 1 receptor (AT1) with SP and NK1 will also be investigated, to begin to understand how vasoactive hormones interact with neuropeptides to influence sympathetic neurons involved in regulating blood flow. Understanding the molecular mechanisms of non-synaptic transmission will enable more specific therapeutic interventions for conditions such as chronic pain. Understanding the interactions between vasoactive hormones and neuropeptides may provide valuable insights for the management of hypertension and hypertension-related disorders.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR003155-25
Application #
8170989
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (41))
Project Start
2010-08-01
Project End
2011-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
25
Fiscal Year
2010
Total Cost
$17,046
Indirect Cost
Name
University of California Irvine
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Kim, Seong M; Nguyen, Tricia T; Ravi, Archna et al. (2018) PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. Cancer Discov 8:866-883
Liang, Elena I; Mah, Emma J; Yee, Albert F et al. (2017) Correlation of focal adhesion assembly and disassembly with cell migration on nanotopography. Integr Biol (Camb) 9:145-155
Chen, Hongtao; Gratton, Enrico; Digman, Michelle A (2016) Self-assisted optothermal trapping of gold nanorods under two-photon excitation. Methods Appl Fluoresc 4:035003
Digiacomo, Luca; Digman, Michelle A; Gratton, Enrico et al. (2016) Development of an image Mean Square Displacement (iMSD)-based method as a novel approach to study the intracellular trafficking of nanoparticles. Acta Biomater 42:189-198
Malacrida, Leonel; Astrada, Soledad; Briva, Arturo et al. (2016) Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures. Biochim Biophys Acta 1858:2625-2635
Chen, Hongtao; Gratton, Enrico; Digman, Michelle A (2015) Spectral properties and dynamics of gold nanorods revealed by EMCCD-based spectral phasor method. Microsc Res Tech 78:283-93
Golfetto, Ottavia; Hinde, Elizabeth; Gratton, Enrico (2015) The Laurdan spectral phasor method to explore membrane micro-heterogeneity and lipid domains in live cells. Methods Mol Biol 1232:273-90
Willenberg, Rafer; Steward, Oswald (2015) Nonspecific labeling limits the utility of Cre-Lox bred CST-YFP mice for studies of corticospinal tract regeneration. J Comp Neurol 523:2665-82
Crosignani, Viera; Jahid, Sohail; Dvornikov, Alexander S et al. (2014) A deep tissue fluorescence imaging system with enhanced SHG detection capabilities. Microsc Res Tech 77:368-73
James, Nicholas G; Digman, Michelle A; Ross, Justin A et al. (2014) A mutation associated with centronuclear myopathy enhances the size and stability of dynamin 2 complexes in cells. Biochim Biophys Acta 1840:315-21

Showing the most recent 10 out of 200 publications