We have shown through immunofluorescence and confocal microscopy that centrosomes of high grade breast tumors are larger and more numerous than centrosomes in normal breast tissue. Additionally, the centrosomes in breast tumor cells are hyperphosphorylated and are capable of nucleating a larger number of microtubules in vitro as compared to centrosomes from normal breast cells. We describe these centrosomes as """"""""hypertrophic"""""""". Attempts to characterize hypertrophic centrosomes at an ultrastructural level using CTEM have been difficult. This is due, at least in part, to the small volume of the centrosomes relative to the total volume of the cells; the centrosomes are few and far between in 90 nm thick sections through cells that are 6-10 um thick. In addition, the hypertrophic centrosomes we have observed with CTEM have been especially electron opaque, making it difficult to resolve microtubules and other structural components of the centrosomes. Initial results using 0.5 and 1 micron thick sections have proven not only to greatly facilitate the locating of hypertropic centrosomes, but have also produced 3-dimensional images with heretofore unseen structural detail. Several tomographic reconstructions of centrosomes from cancerous cells were performed when Dr. Lingle visited the laboratory last summer. Additional reconstructions are planned in the near future.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR004050-13
Application #
6469043
Study Section
Project Start
2001-05-01
Project End
2002-04-30
Budget Start
Budget End
Support Year
13
Fiscal Year
2001
Total Cost
$106,600
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Funakoshi, Shunsuke; Miki, Kenji; Takaki, Tadashi et al. (2016) Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep 6:19111
Rubio-Marrero, Eva N; Vincelli, Gabriele; Jeffries, Cy M et al. (2016) Structural Characterization of the Extracellular Domain of CASPR2 and Insights into Its Association with the Novel Ligand Contactin1. J Biol Chem 291:5788-802
Yin, Xinghua; Kidd, Grahame J; Ohno, Nobuhiko et al. (2016) Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling. J Cell Biol 215:531-542
Zhao, Claire Y; Greenstein, Joseph L; Winslow, Raimond L (2016) Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network. J Mol Cell Cardiol 91:215-27
Rajagopal, Vijay; Bass, Gregory; Walker, Cameron G et al. (2015) Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Comput Biol 11:e1004417
Schachtrup, Christian; Ryu, Jae Kyu; Mammadzada, Könül et al. (2015) Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-? signaling and astrocyte functions. Nat Neurosci 18:1077-80
Sanders, Matthew A; Madoux, Franck; Mladenovic, Ljiljana et al. (2015) Endogenous and Synthetic ABHD5 Ligands Regulate ABHD5-Perilipin Interactions and Lipolysis in Fat and Muscle. Cell Metab 22:851-60
Takeshima, Hiroshi; Hoshijima, Masahiko; Song, Long-Sheng (2015) Ca²? microdomains organized by junctophilins. Cell Calcium 58:349-56
Mills, Elizabeth A; Davis, Chung-ha O; Bushong, Eric A et al. (2015) Astrocytes phagocytose focal dystrophies from shortening myelin segments in the optic nerve of Xenopus laevis at metamorphosis. Proc Natl Acad Sci U S A 112:10509-14
Kim, K-Y; Perkins, G A; Shim, M S et al. (2015) DRP1 inhibition rescues retinal ganglion cells and their axons by preserving mitochondrial integrity in a mouse model of glaucoma. Cell Death Dis 6:e1839

Showing the most recent 10 out of 384 publications