This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. GENERALIZED INSTRUMENT CONTROL AND AUTOMATION SOFTWARE DEVELOPMENT This subproject's general objective is to enhance our ability to acquire data from light and electron microscopes (LM/EM) at the facility as well as at our allied resources, by developing, refining, and applying software technologies to integrate instrumentation, computing, and informatics technologies. Specifically, we aim to increase data acquisition and analysis throughput and increase the quality and extent of information logged about data collection and instrument configuration by leveraging on and expanding our scalable generalized telemicroscopy system (Molina et al., 2005). This system is designed to integrate, organize, and unify the control of imaging instruments and accessories (detectors, stages, etc.) and securely couple their use to advanced cyberinfrastructure, including resources for data management and storage, high-performance computing, and informatics. This software architecture is being extended to integrate instruments of unique value to the mesoscale imaging aims of the Center, in particular the incoming FEI Titan STEM/TEM. Data-driven and computationally enhanced automation schemes will be developed along with supporting services to organize and coordinate the increasingly large data volumes delivered from each instrument. Unifying interfaces are also be developed to simplify how manual, automated, basic, and advanced features are presented to the biomedical researcher. The steps necessary for achievement of these goals leverage, extend, and refine the GTS to integrate key multimodal imaging instruments (local and remote) to enable advanced control and automation for high-throughput mesoscale imaging;increasing our data handling performance and refining session state reporting through refinements to the capabilities of the GTS. Lastly, we shall develop a software prototyping environment to streamline, promote, and simplify the development of novel instrument-based applications, including automation and data-driven feedback schemes.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR004050-22
Application #
8169588
Study Section
Special Emphasis Panel (ZRG1-BST-R (40))
Project Start
2010-04-01
Project End
2011-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
22
Fiscal Year
2010
Total Cost
$155,356
Indirect Cost
Name
University of California San Diego
Department
Neurosciences
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Funakoshi, Shunsuke; Miki, Kenji; Takaki, Tadashi et al. (2016) Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep 6:19111
Rubio-Marrero, Eva N; Vincelli, Gabriele; Jeffries, Cy M et al. (2016) Structural Characterization of the Extracellular Domain of CASPR2 and Insights into Its Association with the Novel Ligand Contactin1. J Biol Chem 291:5788-802
Yin, Xinghua; Kidd, Grahame J; Ohno, Nobuhiko et al. (2016) Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling. J Cell Biol 215:531-542
Zhao, Claire Y; Greenstein, Joseph L; Winslow, Raimond L (2016) Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network. J Mol Cell Cardiol 91:215-27
Rajagopal, Vijay; Bass, Gregory; Walker, Cameron G et al. (2015) Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Comput Biol 11:e1004417
Schachtrup, Christian; Ryu, Jae Kyu; Mammadzada, Könül et al. (2015) Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-? signaling and astrocyte functions. Nat Neurosci 18:1077-80
Sanders, Matthew A; Madoux, Franck; Mladenovic, Ljiljana et al. (2015) Endogenous and Synthetic ABHD5 Ligands Regulate ABHD5-Perilipin Interactions and Lipolysis in Fat and Muscle. Cell Metab 22:851-60
Takeshima, Hiroshi; Hoshijima, Masahiko; Song, Long-Sheng (2015) Ca²? microdomains organized by junctophilins. Cell Calcium 58:349-56
Mills, Elizabeth A; Davis, Chung-ha O; Bushong, Eric A et al. (2015) Astrocytes phagocytose focal dystrophies from shortening myelin segments in the optic nerve of Xenopus laevis at metamorphosis. Proc Natl Acad Sci U S A 112:10509-14
Kim, K-Y; Perkins, G A; Shim, M S et al. (2015) DRP1 inhibition rescues retinal ganglion cells and their axons by preserving mitochondrial integrity in a mouse model of glaucoma. Cell Death Dis 6:e1839

Showing the most recent 10 out of 384 publications