The prediction of three-dimensional protein/ligand conformations and binding free-energies is needed for structure-based drug design. It is believed that these conformations can be calculated by global minimization and analysis of conformational energy functions, but application to practical problems has been difficult because of the multiple-minima problem. Monte Carlo and simulated annealing methods have been successful with small test problems, but have not been applied to realistic problems because of their high-dimensionality and complexity. We are developing a new type of free-energy global minimization method based on renormalization group ideas in which the protein conformation space is dissected into metatable state regions using a temperature- and space-dependent coarse-graining. This provides a novel hierarchical dissection of the underlying structure of the conformation space that we intend to use to guide parallel computational search strategies efficiently along kinetic trajectories similar to those followed by physical proteins.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR004293-05
Application #
5224829
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
1996
Total Cost
Indirect Cost
Chiang, Chi-Tung; Shores, Kevin S; Freindorf, Marek et al. (2008) Size-restricted proton transfer within toluene-methanol cluster ions. J Phys Chem A 112:11559-65
Kazmierkiewicz, Rajmund; Liwo, Adam; Scheraga, Harold A (2003) Addition of side chains to a known backbone with defined side-chain centroids. Biophys Chem 100:261-80
Scheraga, Harold A; Pillardy, Jaroslaw; Liwo, Adam et al. (2002) Evolution of physics-based methodology for exploring the conformational energy landscape of proteins. J Comput Chem 23:28-34
Scheraga, Harold A; Vila, Jorge A; Ripoll, Daniel R (2002) Helix-coil transitions re-visited. Biophys Chem 101-102:255-65
Kazmierkiewicz, Rajmund; Liwo, Adam; Scheraga, Harold A (2002) Energy-based reconstruction of a protein backbone from its alpha-carbon trace by a Monte-Carlo method. J Comput Chem 23:715-23
Liwo, Adam; Arlukowicz, Piotr; Czaplewski, Cezary et al. (2002) A method for optimizing potential-energy functions by a hierarchical design of the potential-energy landscape: application to the UNRES force field. Proc Natl Acad Sci U S A 99:1937-42
Pillardy, J; Arnautova, Y A; Czaplewski, C et al. (2001) Conformation-family Monte Carlo: a new method for crystal structure prediction. Proc Natl Acad Sci U S A 98:12351-6
Vila, J A; Ripoll, D R; Scheraga, H A (2001) Influence of lysine content and pH on the stability of alanine-based copolypeptides. Biopolymers 58:235-46
Pillardy, J; Czaplewski, C; Liwo, A et al. (2001) Recent improvements in prediction of protein structure by global optimization of a potential energy function. Proc Natl Acad Sci U S A 98:2329-33
Czaplewski, C; Rodziewicz-Motowidlo, S; Liwo, A et al. (2000) Molecular simulation study of cooperativity in hydrophobic association. Protein Sci 9:1235-45

Showing the most recent 10 out of 20 publications