Glucoamylase (a-1,4-glucan glucohydrolase, EC 3.2.1.3) is an inverting exohydrolase, that catalyzes the release of b-glucose from the non reducing end of maltodextrin chains. Glucoamylase is inhibited by the sugar analog acarbose which binds to the active site. We are interested in conducting differential scanning calorimetry (DSC) measurements to investigate the stability of glucoamylase and mutants thereof. Glucoamylase is not reversible, but we would like to extract as much thermodynamic information as possible from a series of DSC experiments. Acarbose is a very tight inhibitor (KA = 1012 M) and by utilizing isothermal titration calororimetry (ITC) the degree of protonation, the pKA , the enthalpy and the heat capacity of binding will be obtained. We are working with glucoamylase from Aspergillus niger and the structure of a closely related glucoamylse from Aspergillus awamori var. X100 complexed with acarbose. By investigating the surface area changes upon binding and utilizing the recently developed thermodynamic structural parameterization, estimates will be made of the relevent thermodynamic quantities. These values will be compared to those found experimentally.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR004328-10
Application #
6122053
Study Section
Project Start
1997-08-05
Project End
1998-08-04
Budget Start
Budget End
Support Year
10
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Jaganaman, Sunil; Pinto, Alex; Tarasev, Michael et al. (2007) High levels of expression of the iron-sulfur proteins phthalate dioxygenase and phthalate dioxygenase reductase in Escherichia coli. Protein Expr Purif 52:273-9
Todd, M J; Gomez, J (2001) Enzyme kinetics determined using calorimetry: a general assay for enzyme activity? Anal Biochem 296:179-87
Karantza, V; Freire, E; Moudrianakis, E N (2001) Thermodynamic studies of the core histones: stability of the octamer subunits is not altered by removal of their terminal domains. Biochemistry 40:13114-23
Griko, Y V; Remeta, D P (1999) Energetics of solvent and ligand-induced conformational changes in alpha-lactalbumin. Protein Sci 8:554-61
Chu, V; Freitag, S; Le Trong, I et al. (1998) Thermodynamic and structural consequences of flexible loop deletion by circular permutation in the streptavidin-biotin system. Protein Sci 7:848-59
Luque, I; Freire, E (1998) Structure-based prediction of binding affinities and molecular design of peptide ligands. Methods Enzymol 295:100-27
Luque, I; Gomez, J; Semo, N et al. (1998) Structure-based thermodynamic design of peptide ligands: application to peptide inhibitors of the aspartic protease endothiapepsin. Proteins 30:74-85
Gomez, J; Semo, N; Freire, E (1998) Structural thermodynamic study of the binding of renin inhibitors to endothiapepsin. Adv Exp Med Biol 436:325-8
Koder, R L; Miller, A F (1998) Overexpression, isotopic labeling, and spectral characterization of Enterobacter cloacae nitroreductase. Protein Expr Purif 13:53-60
Freire, E (1998) Statistical thermodynamic linkage between conformational and binding equilibria. Adv Protein Chem 51:255-79

Showing the most recent 10 out of 86 publications