The primary objective of the Resource for Integrated Glycotechnology is the development of multidisciplinary approaches to the solution of problems in glycobiology. A particular focus is a subset of problems related to glycosaminoglycan function. Glycosaminoglycans such as heparin, heparan sulfate, and chondroitin sulfate play important roles in modulating intracellular signaling, influencing the migration of immune cells to sites of infection, controlling angiogenesis in tumors, and regulating regeneration of neurons. They also serve as receptors for pathogenic organisms. To fulfill these roles, binding proteins interact with specific regions of these glycosaminoglycans. Understanding these interactions is an important step toward intervention in human disease, yet little information is available on the specific sequences recognized, the structural aspects of the interactions, or they way in which interactions result in cellular response. The lack of information is in part due to the extraordinary complexity of the sequences of these carbohydrate based polymers. The Resource develops technology to provide this information by combining advances in separation and synthesis of glycosaminoglycan oligomers that display binding specificity, in mass spectrometry (MS) based means of identifying oligomer structures, in nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry based means of defining three dimensional structures of complexes, in computational modeling and prediction of glycosaminoglycan-protein interactions, and in cell and biochemically based means of monitoring a biological response. The technology development is driven by selected driving biomedical projects with external collaborators. These include ones that address the function of Robo-Slit signaling in angiogenesis, the function of DLB domains in survival of the malaria parasite in placental infection, the specificity of glycosaminoglycan binding antibodies in detection of cellular abnormalities, and the regulation of immune cell migration by chemokines. Technology is disseminated through extensive training programs and additional collaborations and service functions hosted by the Resource.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR005351-21
Application #
7763653
Study Section
Special Emphasis Panel (ZRG1-IMST-A (40))
Program Officer
Sheeley, Douglas
Project Start
1997-09-30
Project End
2015-01-31
Budget Start
2010-04-10
Budget End
2011-01-31
Support Year
21
Fiscal Year
2010
Total Cost
$1,684,598
Indirect Cost
Name
University of Georgia
Department
Type
Organized Research Units
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Hannides, Angelos K; Aller, Robert C (2016) Priming effect of benthic gastropod mucus on sedimentary organic matter remineralization. Limnol Oceanogr 61:1640-1650
Revoredo, Leslie; Wang, Shengjun; Bennett, Eric Paul et al. (2016) Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology 26:360-76
Zhao, Wujun; Zhu, Taotao; Cheng, Rui et al. (2016) Label-Free and Continuous-Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids. Adv Funct Mater 26:3990-3998
Wu, Liang; Viola, Cristina M; Brzozowski, Andrzej M et al. (2015) Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol 22:1016-22
Qiu, Hong; Xiao, Wenyuan; Yue, Jingwen et al. (2015) Heparan sulfate modulates Slit3-induced endothelial cell migration. Methods Mol Biol 1229:549-55
Li, Zixuan; Moniz, Heather; Wang, Shuo et al. (2015) High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface. J Biol Chem 290:10729-40
Czuchry, Diana; Desormeaux, Paul; Stuart, Melissa et al. (2015) Identification and Biochemical Characterization of the Novel ?2,3-Sialyltransferase WbwA from Pathogenic Escherichia coli Serotype O104. J Bacteriol 197:3760-8
Liu, Lin; Zha, Jingying; DiGiandomenico, Antonio et al. (2015) Synthetic Enterobacterial Common Antigen (ECA) for the Development of a Universal Immunotherapy for Drug-Resistant Enterobacteriaceae. Angew Chem Int Ed Engl 54:10953-7
Zhang, Fuming; Moniz, Heather A; Walcott, Benjamin et al. (2014) Probing the impact of GFP tagging on Robo1-heparin interaction. Glycoconj J 31:299-307
Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade et al. (2014) Novel entries in a fungal biofilm matrix encyclopedia. MBio 5:e01333-14

Showing the most recent 10 out of 245 publications