This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The Van Kuppevelt laboratory has adopted phage display technology to generate anti-HS single chain variable fragment antibodies, which selectively recognize HS oligosaccharide motifs. Importantly, many of the antibodies show unique staining patterns of various tissue sections and have an ability to distinguish between healthy and diseased tissue, the latter including tumorous and nephropathological tissue. However, a major limitation of the antibody technology is a lack of knowledge of sulfation patterns of HS epitopes that are recognized by the antibodies. It is to be expected that the BTBR technology can address this important deficiency. The integrated approach that will be developed by this resource will be employed to identify ligand requirements of the phage display derived single chain antibodies. In this approach, HS will be partially fragmented by chemical and/or enzymatic approaches and the resulting mixtures of oligosaccharides fractionated by size exclusion chromatography and SAX. Fragments that bind with high affinity to an antibody will be isolated by affinity purification and the chemical structures of the compounds determined by mass spectroscopic approaches. Putative ligands and structural analogs will be prepared by a modular approach and the resulting compounds will be employed to establish structure activity relationships (SAR). In addition, putative oligosaccharide ligand will be established by computational approaches and the resulting compounds will also be subjected to chemical synthesis.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR005351-22
Application #
8361820
Study Section
Special Emphasis Panel (ZRG1-IMST-A (40))
Project Start
2011-02-01
Project End
2012-01-31
Budget Start
2011-02-01
Budget End
2012-01-31
Support Year
22
Fiscal Year
2011
Total Cost
$1,772
Indirect Cost
Name
University of Georgia
Department
Type
Organized Research Units
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Hannides, Angelos K; Aller, Robert C (2016) Priming effect of benthic gastropod mucus on sedimentary organic matter remineralization. Limnol Oceanogr 61:1640-1650
Revoredo, Leslie; Wang, Shengjun; Bennett, Eric Paul et al. (2016) Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology 26:360-76
Zhao, Wujun; Zhu, Taotao; Cheng, Rui et al. (2016) Label-Free and Continuous-Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids. Adv Funct Mater 26:3990-3998
Liu, Lin; Zha, Jingying; DiGiandomenico, Antonio et al. (2015) Synthetic Enterobacterial Common Antigen (ECA) for the Development of a Universal Immunotherapy for Drug-Resistant Enterobacteriaceae. Angew Chem Int Ed Engl 54:10953-7
Wu, Liang; Viola, Cristina M; Brzozowski, Andrzej M et al. (2015) Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol 22:1016-22
Qiu, Hong; Xiao, Wenyuan; Yue, Jingwen et al. (2015) Heparan sulfate modulates Slit3-induced endothelial cell migration. Methods Mol Biol 1229:549-55
Li, Zixuan; Moniz, Heather; Wang, Shuo et al. (2015) High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface. J Biol Chem 290:10729-40
Czuchry, Diana; Desormeaux, Paul; Stuart, Melissa et al. (2015) Identification and Biochemical Characterization of the Novel ?2,3-Sialyltransferase WbwA from Pathogenic Escherichia coli Serotype O104. J Bacteriol 197:3760-8
Zhang, Fuming; Moniz, Heather A; Walcott, Benjamin et al. (2014) Probing the impact of GFP tagging on Robo1-heparin interaction. Glycoconj J 31:299-307
Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade et al. (2014) Novel entries in a fungal biofilm matrix encyclopedia. MBio 5:e01333-14

Showing the most recent 10 out of 245 publications