This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We continue MBIRN to integrate computational intrastructure of 4 NIH national resources: Duke Center for In Vivo Microscopy, Lab of neurological imaging at UCLA with MRI center at Caltech's Beckman Institute;NCMIR, and NBCR---both at UCSD. MBIRN will enhance productivity of ongoing collaboration in basic mouse models of neurological disorders: 1) DAT knockout mouse with alterations in dopaninergic system, making it ideal for studies of schizophrenia, ADHD, and substance abuse. 2) EAE mouse models (both chemically induced and transgenic), which undergo episodic weakness and demylination characteristic of multiple sclerosis. MBIRN will enable construction of scalable federated databases of multi-scale images including MRM, cyrosectioned whole brains, conventional histology, including localized gene expression, 3D subcellular data with protein localization, and supramolecular image data from transmission electron microscopy (TEM) and immediate high voltage electron microscopy. 3) Infrastructure developed in the work will lay the foundation for extension to other animal models of neurologic disease. Databases developed for these specific animal models will provide new insight into these models and serve as reference data for non-invasive imaging work being undertaken by BIRN partner site group on human brain structure imaging.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR005959-20
Application #
7956857
Study Section
Special Emphasis Panel (ZRG1-SBIB-P (40))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
20
Fiscal Year
2009
Total Cost
$10,920
Indirect Cost
Name
Duke University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Tang, Xinyan; Jing, Liufang; Richardson, William J et al. (2016) Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res 34:1316-26
Hodgkinson, Conrad P; Bareja, Akshay; Gomez, José A et al. (2016) Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ Res 118:95-107
Schmeckpeper, Jeffrey; Verma, Amanda; Yin, Lucy et al. (2015) Inhibition of Wnt6 by Sfrp2 regulates adult cardiac progenitor cell differentiation by differential modulation of Wnt pathways. J Mol Cell Cardiol 85:215-25
Roos, Justus E; McAdams, Holman P; Kaushik, S Sivaram et al. (2015) Hyperpolarized Gas MR Imaging: Technique and Applications. Magn Reson Imaging Clin N Am 23:217-29
He, Mu; Robertson, Scott H; Kaushik, S Sivaram et al. (2015) Dose and pulse sequence considerations for hyperpolarized (129)Xe ventilation MRI. Magn Reson Imaging 33:877-85
Huang, Lingling; Walter, Vonn; Hayes, D Neil et al. (2014) Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clin Cancer Res 20:1566-75
Huang, Jing; Guo, Jian; Beigi, Farideh et al. (2014) HASF is a stem cell paracrine factor that activates PKC epsilon mediated cytoprotection. J Mol Cell Cardiol 66:157-64
Yuan, Ying; Gilmore, John H; Geng, Xiujuan et al. (2014) FMEM: functional mixed effects modeling for the analysis of longitudinal white matter Tract data. Neuroimage 84:753-64
He, Mu; Kaushik, S Sivaram; Robertson, Scott H et al. (2014) Extending semiautomatic ventilation defect analysis for hyperpolarized (129)Xe ventilation MRI. Acad Radiol 21:1530-41
Davis, Ryan M; Viglianti, Benjamin L; Yarmolenko, Pavel et al. (2013) A method to convert MRI images of temperature change into images of absolute temperature in solid tumours. Int J Hyperthermia 29:569-81

Showing the most recent 10 out of 239 publications