This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Duke Medical Imaging Training Program All imaging trainees are subject to the degree requirements of the University, their home department, and the medical imaging training program. Current BME doctoral students are required to complete 48 credit hours of course work, including a required first year BME Seminar Series for a total of two credit hours. Other than the seminar series, there is no core curriculum in the BME graduate program. Individual students, their advisors, and their graduate committee choose a custom curriculum reflecting that student's background and research and career aspirations. Students in the medical imaging training program have the following requirements: -- Complete a core curriculum of five courses: BME 233 Diagnostic Imaging Systems;BME 234 Advanced Diagnostic Imaging Systems;BME 334 Radiology in Practice;and one modality specific course. BME 334 Radiology in Practice (Gregg Trahey) Students observe and interact with clinicians and technicians in the image acquisition, analysis, and diagnostic methods in the Duke University Medical Center. Modality imaging practices are observed in selected clinics in Radiology including body CT/MRI, brain imaging, chest imaging, musculoskeletal imaging, mammography, pediatric radiology, nuclear medicine, and ultrasound imaging. Students attend relevant grand rounds and image review sessions.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR005959-21
Application #
8171576
Study Section
Special Emphasis Panel (ZRG1-SBIB-P (40))
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
21
Fiscal Year
2010
Total Cost
$16,380
Indirect Cost
Name
Duke University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Tang, Xinyan; Jing, Liufang; Richardson, William J et al. (2016) Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res 34:1316-26
Hodgkinson, Conrad P; Bareja, Akshay; Gomez, José A et al. (2016) Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ Res 118:95-107
Schmeckpeper, Jeffrey; Verma, Amanda; Yin, Lucy et al. (2015) Inhibition of Wnt6 by Sfrp2 regulates adult cardiac progenitor cell differentiation by differential modulation of Wnt pathways. J Mol Cell Cardiol 85:215-25
Roos, Justus E; McAdams, Holman P; Kaushik, S Sivaram et al. (2015) Hyperpolarized Gas MR Imaging: Technique and Applications. Magn Reson Imaging Clin N Am 23:217-29
He, Mu; Robertson, Scott H; Kaushik, S Sivaram et al. (2015) Dose and pulse sequence considerations for hyperpolarized (129)Xe ventilation MRI. Magn Reson Imaging 33:877-85
Huang, Lingling; Walter, Vonn; Hayes, D Neil et al. (2014) Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clin Cancer Res 20:1566-75
Huang, Jing; Guo, Jian; Beigi, Farideh et al. (2014) HASF is a stem cell paracrine factor that activates PKC epsilon mediated cytoprotection. J Mol Cell Cardiol 66:157-64
Yuan, Ying; Gilmore, John H; Geng, Xiujuan et al. (2014) FMEM: functional mixed effects modeling for the analysis of longitudinal white matter Tract data. Neuroimage 84:753-64
He, Mu; Kaushik, S Sivaram; Robertson, Scott H et al. (2014) Extending semiautomatic ventilation defect analysis for hyperpolarized (129)Xe ventilation MRI. Acad Radiol 21:1530-41
van Rhoon, Gerard C; Samaras, Theodoros; Yarmolenko, Pavel S et al. (2013) CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol 23:2215-27

Showing the most recent 10 out of 239 publications