This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. A fundamental need exists to determine whether pulmonary lesions detected on a cancer patient's high-resolution CT scan are metastatic disease. While CT has extraordinary sensitivity, it lacks the specificity to make this critical distinction. The long-term goal of our research, therefore, is to develop a new tomographic imaging method to non-invasively tag and detect cancer cells in the lungs with molecular specificity and high resolution. Our approach uses hyperpolarized (HP) gas MR imaging to visualize cancer cells that have been targeted by tumor-specific functionalized Iron Oxide Nanoparticles (SPIONs). The objective of this application is to optimize this demonstrated method in mouse models of metastatic cancer, establish its theoretical and practical detection limits, and directly compare this method to micro-CT, while using histology to establish ground truth. The central hypothesis is that this new imaging method will surpass the sensitivity of CT, while adding the molecular specificity needed to distinguish metastatic from benign lesion. The focus of this particular sub-project is on the optimization of the SPION formulation to enable vascular injection of the agent without unintended accumulation in the lungs where no tumors are present. Hence, we have the following specific aims: 1) Establish a formulation and stabilization approach that enables vascular injection of LHRH-SPIONs without unintended accumulation in the capillary beds of the lungs. 2) To acquire 3He and 129Xe MRI images in control mice before and after vascular injection of LHRH-SPIONs to test for absence of accumulation 3) To obtain histopathology on these mice to further determine absence of SPION accumulation. 4) To repeat the above tests in mice that do have metastatic tumors and to observe accumulation of LHRH-SPIONs. This work represents a critical technical step to more broadly establish the approach of molecular imaging of the lung combining hyperpolarized gas MRI and targeted super-paramagnetic iron oxide nanoparticles. This work is part of an ongoing collaboration between Louisiana State University and Duke.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR005959-22
Application #
8363209
Study Section
Special Emphasis Panel (ZRG1-SBIB-P (40))
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
22
Fiscal Year
2011
Total Cost
$3,068
Indirect Cost
Name
Duke University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Tang, Xinyan; Jing, Liufang; Richardson, William J et al. (2016) Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res 34:1316-26
Hodgkinson, Conrad P; Bareja, Akshay; Gomez, José A et al. (2016) Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ Res 118:95-107
Schmeckpeper, Jeffrey; Verma, Amanda; Yin, Lucy et al. (2015) Inhibition of Wnt6 by Sfrp2 regulates adult cardiac progenitor cell differentiation by differential modulation of Wnt pathways. J Mol Cell Cardiol 85:215-25
Roos, Justus E; McAdams, Holman P; Kaushik, S Sivaram et al. (2015) Hyperpolarized Gas MR Imaging: Technique and Applications. Magn Reson Imaging Clin N Am 23:217-29
He, Mu; Robertson, Scott H; Kaushik, S Sivaram et al. (2015) Dose and pulse sequence considerations for hyperpolarized (129)Xe ventilation MRI. Magn Reson Imaging 33:877-85
Huang, Lingling; Walter, Vonn; Hayes, D Neil et al. (2014) Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clin Cancer Res 20:1566-75
Huang, Jing; Guo, Jian; Beigi, Farideh et al. (2014) HASF is a stem cell paracrine factor that activates PKC epsilon mediated cytoprotection. J Mol Cell Cardiol 66:157-64
Yuan, Ying; Gilmore, John H; Geng, Xiujuan et al. (2014) FMEM: functional mixed effects modeling for the analysis of longitudinal white matter Tract data. Neuroimage 84:753-64
He, Mu; Kaushik, S Sivaram; Robertson, Scott H et al. (2014) Extending semiautomatic ventilation defect analysis for hyperpolarized (129)Xe ventilation MRI. Acad Radiol 21:1530-41
van Rhoon, Gerard C; Samaras, Theodoros; Yarmolenko, Pavel S et al. (2013) CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol 23:2215-27

Showing the most recent 10 out of 239 publications