The macaque lateral geniculate nucleus (LGN) exhibits an intricate lamination pattern:depending on the visual eccentricity, it has regions with six, four, and two distinct layers.The transition from six to four layers always coincides with the position of small cell-free gaps corresponding to the blind spot in theretina [42]. We have developed a 3-D model in which local cell interactions cause a wave of development of neuronal receptive fields to propagate through the nucleus and establish distinct lamination patterns. The initial (six-layered) pattern is maintained andpropagated along the LGN by strict retinotopy, cell interactions promoting clustering of cells with similar functionality, as well asexternal gradients. The initial pattern gradually becomes unstable and perturbations due to the blind spot gaps induce a sharptransition to a more stable four-layered pattern. Critical factorsfor the final global lamination pattern are the choice of the initial (foveal) pattern, the cell interaction distances, the size andlocation of the gaps, and the shape of the developmental wave-front. A simplified version of the model is amenable to analyticaltreatment, which provides important insights in the behavior of the more general model.This analysis reveals a close similarity of the laminar transition in this biological system with a well understood physical phenomenon, the so called shock-wave effect.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR005969-07
Application #
5225217
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
1996
Total Cost
Indirect Cost
Shim, Jiwook; Banerjee, Shouvik; Qiu, Hu et al. (2017) Detection of methylation on dsDNA using nanopores in a MoS2 membrane. Nanoscale 9:14836-14845
Wolfe, Aaron J; Si, Wei; Zhang, Zhengqi et al. (2017) Quantification of Membrane Protein-Detergent Complex Interactions. J Phys Chem B 121:10228-10241
Decker, Karl; Page, Martin; Aksimentiev, Aleksei (2017) Nanoscale Ion Pump Derived from a Biological Water Channel. J Phys Chem B 121:7899-7906
Radak, Brian K; Chipot, Christophe; Suh, Donghyuk et al. (2017) Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems. J Chem Theory Comput 13:5933-5944
Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V et al. (2016) Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo3 from Escherichia coli. Biochemistry 55:5714-5725
Belkin, Maxim; Aksimentiev, Aleksei (2016) Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores. ACS Appl Mater Interfaces 8:12599-608
Poudel, Kumud R; Dong, Yongming; Yu, Hang et al. (2016) A time course of orchestrated endophilin action in sensing, bending, and stabilizing curved membranes. Mol Biol Cell 27:2119-32
Vermaas, Josh V; Taguchi, Alexander T; Dikanov, Sergei A et al. (2015) Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides. Biochemistry 54:2104-16
Belkin, Maxim; Chao, Shu-Han; Jonsson, Magnus P et al. (2015) Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. ACS Nano 9:10598-611
Shen, Rong; Han, Wei; Fiorin, Giacomo et al. (2015) Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments. PLoS Comput Biol 11:e1004368

Showing the most recent 10 out of 371 publications