This project is intended to demonstrate the feasibility and viability of integrating specialized tools to access and manage high performance molecular biology applications in a heterogeneous environment. By this integration, solutions to increasingly more difficult problems in the biomedical sciences can be realized. At the same time, this project will demonstrate the ability to perform this integration in a relatively transparent fashion to the user. With the evolution of increasingly more powerful computer architectures, computer networks and application development tools supporting distributed computing environments, this project will utilize some of these evolving technologies and direct them toward solving problems in the biomedical sciences. In particular, the massively parallel Connection Machines (CM-2 and CM-5) and the vector capabilities of the CRAY C90 will be combined to solve computationally intensive evolutionary relatedness of specific genes and protein problems as well as other multiple sequence alignment problems in molecular biology and molecular chemistry. In addition, the output from these systems will be utilized to access sequence specific information found in the cited literature obtainable from various literature databases (e.g., Medline and others). By integrating the tools and utilizing the resources that best address various aspects of these scientific research problems, a researcher can gain access to and utilize the most sophisticated services available from a common access point, the researcher's local workstation. By utilizing open system concepts and distributed computing tools, practitioners can utilize these integrated tools from a variety of heterogeneous devices in a totally distributed, national computing environment.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR006009-07
Application #
5225407
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
1996
Total Cost
Indirect Cost
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Jurkowitz, Marianne S; Patel, Aalapi; Wu, Lai-Chu et al. (2015) The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. Biochim Biophys Acta 1848:742-51

Showing the most recent 10 out of 292 publications