This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Intracytoplasmic sperm injection (ICSI) is a common in vitro fertilization technique in which a selected spermatozoon is directly injected into a mature oocyte. Many ICSI experiments, however, show a pronounced variation in survival, fertilization and pregnancy rates due to the injury of eggs induced by the external mechanical forces. Therefore, a fundamental study of the mechanical response of eggs in ICSI is required to lessen the injury as much as possible so that the ICSI success rate could be improved. It is proposed that the material point method (MPM) be employed to simulate the ICSI process involving contact, impact, penetration, and solid-fluid interactions. As one of the innovative spatial discretization procedures, the MPM discretizes the continuum body with a collection of material particles and solves the equations of motion on a computational background mesh. By taking advantage of both the Eulerian and Lagrangian methods, the MPM is suitable for those problems involving large deformations, multiple material phases, as well as material separation and moving discontinuity. The proposed research tasks consist of: (1) development of a three-dimensional MPM program for simulating cell membranes and fluids, (2) study of the effects of different material properties and external forces on the mechanical response of eggs in ICSI, and (3) investigation of the convergence and stability of the MPM modeling of the ICSI process.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR006009-18
Application #
7723298
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2008-08-01
Project End
2009-07-31
Budget Start
2008-08-01
Budget End
2009-07-31
Support Year
18
Fiscal Year
2008
Total Cost
$473
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Jurkowitz, Marianne S; Patel, Aalapi; Wu, Lai-Chu et al. (2015) The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. Biochim Biophys Acta 1848:742-51

Showing the most recent 10 out of 292 publications