This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The characterization and interaction of transcriptional regulatory elements is fundamental to understanding how eukaryotic gene networks operate. Identification of the underlying transcription factors (TFs) and their target sequences is crucial to characterizing these regulatory elements. Many computational methods developed to locate TF binding sites (TFBS) have relied on information from previously characterized sites. Yet, the majority of TFs do have not binding site profiles, suggesting that these methods may not find uncharacterized sites. We propose a new approach to identify TFBSs in a set of unaligned sequences with no prior binding site information and with an emphasis on discovering new functional binding sites. Our method compiles positional weight matrices from a set of regulatory sequences taken from co-regulated or tissue-specific genes. These matrices are then used to find statistically over-represented motifs in the input sequences, relative to the rest of the organisms intergenic genome. Unlike other published TFBS discovery methods, our approach estimates underlying probabilities using a 'brute-force' approach that requires substantial computational time. We have tested our approach on a set of well-characterized Drosophila development genes and our results indicate this method effectively predicts known binding sites and also identifies DNA regions that contain promising TFBS candidates. Although we have very positive results with our method, we have not tested it directly against other similar methods (e.g., WeederWeb) using identical data sets and metrics of success. Therefore, we request teragrid computational time to perform a series of rigorous tests of our method using published data sets from other studies. We also plan to analyze a set of co-regulated genes from the seq-squirt. Our code compiles (gcc) and runs successfully on both Linux and PC platforms.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR006009-18
Application #
7723410
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2008-08-01
Project End
2009-07-31
Budget Start
2008-08-01
Budget End
2009-07-31
Support Year
18
Fiscal Year
2008
Total Cost
$473
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Ramakrishnan, N; Radhakrishnan, Ravi (2015) Phenomenology based multiscale models as tools to understand cell membrane and organelle morphologies. Adv Planar Lipid Bilayers Liposomes 22:129-175

Showing the most recent 10 out of 292 publications