This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The goal of this project is to acquire, assemble, and analyze images of brain circuitry in experimental animals with the aim of understanding the structure and function of neural circuits. Our initial work is to align the largest possible serial section transmission electron microscopy (TEM) image sets produced by Harvard's semi-automated TEM capture system. These data are being used to study the operation of circuits in the mouse visual cortex and are co-registered with in-vivo calcium images of the same specimen while exposed to various visual stimuli. The current Harvard instrument, operating at ~20 Mpixels/sec, captures mosaic image sets of 50nm thick rectangular sections up to 1200 by 750 microns at 4 nm in-plane resolution in less than an hour each. These data consist of thousands of camera frames, ~10 Mpixels each, that must be aligned in 2D to produce full planar images up to 56 GBytes. The planes must then be aligned in 3D to produce registered volumetric data that can be analyzed much more easily than individual planes or camera frames. The first two datasets, currently being aquired over a period of ~6 months, are larger than 10 TBytes each. Methods developed at this stage will be applied to even larger datasets produced by a faster next generation capture system to be built during the next 2 years. The resulting PetaByte data will cover volumes up to 1mm3 which are sufficient to contain an entire cortical column extending from the brain surface into the white matter.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR006009-20
Application #
8171808
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2010-08-01
Project End
2013-07-31
Budget Start
2010-08-01
Budget End
2013-07-31
Support Year
20
Fiscal Year
2010
Total Cost
$117,402
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Ramakrishnan, N; Radhakrishnan, Ravi (2015) Phenomenology based multiscale models as tools to understand cell membrane and organelle morphologies. Adv Planar Lipid Bilayers Liposomes 22:129-175

Showing the most recent 10 out of 292 publications