This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator.
The aim of the project is to design and develop algorithms to predict protein-protein interactions using docking. The structure of the docked complex is useful in elucidating the biological function of the protein. Since solving a protein structure experimentally is time consuming and technically challenging, development of computational docking has become an urgent task in protein bioinformatics. The starting point in this approach are the crystallized structures of the interacting proteins which are treated as rigid, and the conformational space generated by the two interacting proteins is explored extensively. To help guide the search, a set of moment invariants are used. The underlying idea is to capture local shape properties defined over a small neighborhood of a set of interest points, in terms of a set of numbers called Zernike moments. These local descriptors are invariant to rotation transform and robust to noise. The rotational and translational space (6D space) is sampled using a geometric hashing algorithm. The predicted models are then ranked using a suitable energy function. This step is followed by the subsequent refinement of the top ranking models using molecular dynamics simulations. Proteins are inherently flexible which means that its 3-D structure may change under different conditions. Accounting for this is very challenging as in addition to the sampling of the rigid-body orientations, due consideration needs to be given to the folding of the protein. In order to avoid the heavily time consuming search through the entire flexible conformational space of two proteins during the docking or refinement process, an ensemble approach is adopted wherein, a pre-generated set of different feasible conformations are cross-docked.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR006009-20
Application #
8171888
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2010-08-01
Project End
2013-07-31
Budget Start
2010-08-01
Budget End
2013-07-31
Support Year
20
Fiscal Year
2010
Total Cost
$1,091
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Jurkowitz, Marianne S; Patel, Aalapi; Wu, Lai-Chu et al. (2015) The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. Biochim Biophys Acta 1848:742-51

Showing the most recent 10 out of 292 publications