This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Glutathione transferases (GSTs) are a large superfamily of isoenzymes essential for the metabolism of many drugs and other exogenously ingested compounds that are potentially toxic to cells. The diverse substrate specificities of the isoenzymes together afford protection to many chemicals including common anti-cancer chemotherapeutic agents such as chlorambucil and adriamycin. Although beneficial under normal physiological circumstances, it has been observed that various cancer cell lines over-express the class pi isoenzyme (hGSTP1-1). The over-expression may underlie resistance against chemotherapy developed by many tumours. GSTs catalyse the addition of glutathione to the electrophilic centre of the receiving substrate. The reaction renders the substrate less toxic and prepares it for export by certain transmembrane proteins for further metabolism. Several GST classes such as hGSTP1-1 are also involved in substrate storage by means of non-catalytic binding of the substrate. In particular, hGSTP1-1 can function as a carrier of nitric oxide (NO), in such forms as N- nitrosoglutathione (GSNO) and dinitrosyldiglutathionyl iron complex (DNDGIC). In this view, a potential role of hGSTP1-1 in signalling or modulating functions of other proteins may be hypothesised. Structures of hGSTP1-1 bound with various compounds will enable an understanding of how hGSTP1-1 performs its functions and any future design of hGSTP1-1 inhibitors for chemotherapy.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR007707-15
Application #
7366219
Study Section
Special Emphasis Panel (ZRG1-BBCB (01))
Project Start
2006-08-01
Project End
2007-07-31
Budget Start
2006-08-01
Budget End
2007-07-31
Support Year
15
Fiscal Year
2006
Total Cost
$14,410
Indirect Cost
Name
University of Chicago
Department
Biochemistry
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Weingarten, Adam S; Dannenhoffer, Adam J; Kazantsev, Roman V et al. (2018) Chromophore Dipole Directs Morphology and Photocatalytic Hydrogen Generation. J Am Chem Soc 140:4965-4968
Yang, Cheolhee; Choi, Minseo; Kim, Jong Goo et al. (2018) Protein Structural Dynamics of Wild-Type and Mutant Homodimeric Hemoglobin Studied by Time-Resolved X-Ray Solution Scattering. Int J Mol Sci 19:
Kazantsev, Roman V; Dannenhoffer, Adam J; Weingarten, Adam S et al. (2017) Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds. J Am Chem Soc 139:6120-6127
Fournier, Bertrand; Sokolow, Jesse; Coppens, Philip (2016) Analysis of multicrystal pump-probe data sets. II. Scaling of ratio data sets. Acta Crystallogr A Found Adv 72:250-60
Cho, Hyun Sun; Schotte, Friedrich; Dashdorj, Naranbaatar et al. (2016) Picosecond Photobiology: Watching a Signaling Protein Function in Real Time via Time-Resolved Small- and Wide-Angle X-ray Scattering. J Am Chem Soc 138:8815-23
Pande, Kanupriya; Hutchison, Christopher D M; Groenhof, Gerrit et al. (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725-9
Weingarten, Adam S; Kazantsev, Roman V; Palmer, Liam C et al. (2015) Supramolecular Packing Controls H? Photocatalysis in Chromophore Amphiphile Hydrogels. J Am Chem Soc 137:15241-6
Pfoh, Roland; Pai, Emil F; Saridakis, Vivian (2015) Nicotinamide mononucleotide adenylyltransferase displays alternate binding modes for nicotinamide nucleotides. Acta Crystallogr D Biol Crystallogr 71:2032-9
Mariette, Céline; Guérin, Laurent; Rabiller, Philippe et al. (2015) The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds. Z Kristallogr Cryst Mater 230:5-11
Yang, Xiaojing; Stojkovi?, Emina A; Ozarowski, Wesley B et al. (2015) Light Signaling Mechanism of Two Tandem Bacteriophytochromes. Structure 23:1179-89

Showing the most recent 10 out of 120 publications